The most NFOs on the net! (again)
  • Anonymous
  • 2025-02-28 12:27:00
  • Unknown

RELEASE >

ReScene version pyReScene Auto 0.7 LERNSTUF File size CRC
Download
25,318
Stored files
4,366 BAF8F370
162 1B87CCDD
RAR-files
lsxb15gw0225.rar 500,000,000 705372ED
lsxb15gw0225.r00 500,000,000 286FC737
lsxb15gw0225.r01 500,000,000 F7756DBC
lsxb15gw0225.r02 500,000,000 ED0FE6EB
lsxb15gw0225.r03 500,000,000 ABD3B07A
lsxb15gw0225.r04 353,908,643 282D8086

Total size: 2,853,908,643
Archived files
01-Deep_Learning_Components\01-Environment_Set_Up_And_Configuration\01-welcome_to_practical_deep_learning_with_python_instructions.html 7,378 420DCD30
01-Deep_Learning_Components\01-Environment_Set_Up_And_Configuration\02-course_introduction.mp4 [d460b8abe7a60646] 29,336,525 5E6605E1
01-Deep_Learning_Components\01-Environment_Set_Up_And_Configuration\03-environment_configuration.mp4 [ee990739a77bdb4e] 22,874,476 8A1AEF41
01-Deep_Learning_Components\01-Environment_Set_Up_And_Configuration\04-system_requirements_and_pre_requisite_for_studying_deep_learning_instructions.html 4,623 F8CAC7AB
01-Deep_Learning_Components\02-Essentials_Of_Deep_Learning\01-machine_learning_vs_deep_learning.mp4 [27e3c8cfe6b6f8bf] 35,935,568 A5CE92D8
01-Deep_Learning_Components\02-Essentials_Of_Deep_Learning\02-what_is_deep_learning.mp4 [d9cd7c501a928aba] 21,299,491 2CF0A518
01-Deep_Learning_Components\02-Essentials_Of_Deep_Learning\03-neural_networks.mp4 [24f4f3d10c7df694] 44,207,764 4E60C8BA
01-Deep_Learning_Components\02-Essentials_Of_Deep_Learning\04-artificial_neural_network_ann.mp4 [496f2ef8a0b82c95] 25,584,989 3256B9C7
01-Deep_Learning_Components\02-Essentials_Of_Deep_Learning\05-ann_types_and_applications.mp4 [cc4c13cfac098fce] 18,647,124 576FEB10
01-Deep_Learning_Components\02-Essentials_Of_Deep_Learning\06-forward_propagation.mp4 [d7b8a5568040f302] 21,609,569 A503563F
01-Deep_Learning_Components\02-Essentials_Of_Deep_Learning\07-perceptron.mp4 [8c5cf9c629abe213] 32,435,317 FC1A4838
01-Deep_Learning_Components\02-Essentials_Of_Deep_Learning\08-learning_rate.mp4 [df9c8077edb19556] 30,672,635 9AB8144F
01-Deep_Learning_Components\02-Essentials_Of_Deep_Learning\09-what_is_activation_function.mp4 [2a811feab15da711] 18,695,506 91168B8C
01-Deep_Learning_Components\02-Essentials_Of_Deep_Learning\10-activation_function_and_its_types.mp4 [d8ae54faf1124552] 24,551,383 61F61699
01-Deep_Learning_Components\02-Essentials_Of_Deep_Learning\11-importance_of_epoch.mp4 [778d8d611b36191] 25,986,972 FF6C0010
01-Deep_Learning_Components\02-Essentials_Of_Deep_Learning\12-single_layer_perceptron_define_sigmoid_function.mp4 [1283c26b934b17eb] 46,147,222 010E1172
01-Deep_Learning_Components\02-Essentials_Of_Deep_Learning\13-single_layer_perceptron_decision_boundary.mp4 [c229d67c3f33d544] 80,898,860 15888C2E
01-Deep_Learning_Components\02-Essentials_Of_Deep_Learning\14-learning_rate_in_deep_learning_instructions.html 3,954 26E14D00
01-Deep_Learning_Components\03-Building_Perceptron_And_Its_Working\01-limitations_of_single_layered_perceptron.mp4 [3fa02caf110b4f90] 11,588,993 16B90DE2
01-Deep_Learning_Components\03-Building_Perceptron_And_Its_Working\02-multi_layered_perceptron.mp4 [8ec0d77be39d39e4] 12,628,815 066EE7A3
01-Deep_Learning_Components\03-Building_Perceptron_And_Its_Working\03-what_is_backpropagation.mp4 [f2780a42c7969c4b] 10,763,067 4802D1E3
01-Deep_Learning_Components\03-Building_Perceptron_And_Its_Working\04-backpropagation.mp4 [f43df9d7f49214c7] 17,824,575 5ADDF0E0
01-Deep_Learning_Components\03-Building_Perceptron_And_Its_Working\05-demonstration_building_a_simple_neural_network.mp4 [b01f67858133e0d9] 42,862,848 0AB70A24
01-Deep_Learning_Components\03-Building_Perceptron_And_Its_Working\06-demonstration_understanding_how_backpropagation_has_worked.mp4 [e0838b0a77d80c1c] 42,416,296 5EB2A085
01-Deep_Learning_Components\03-Building_Perceptron_And_Its_Working\07-demonstration_handwritten_digits_classification_data_preprocessing.mp4 [774cf58d78f21bb0] 43,818,822 64CCED3C
01-Deep_Learning_Components\03-Building_Perceptron_And_Its_Working\08-demonstration_handwritten_digits_classification_designing_the_model.mp4 [33788c6bdeab0269] 76,771,350 EDF53D8A
01-Deep_Learning_Components\03-Building_Perceptron_And_Its_Working\09-demonstration_handwritten_digits_classification_optimizing_the_model.mp4 [4f5ca495101237f0] 93,082,757 23863F00
01-Deep_Learning_Components\03-Building_Perceptron_And_Its_Working\10-hebbian_learning_algorithm_instructions.html 27,935 B0B9CB03
01-Deep_Learning_Components\04-Module_Wrap_Up_And_Assessment\01-summary_of_deep_learning_components.mp4 [e8fc2eca32210447] 38,097,310 E01D4885
02-Deep_Learning_With_Cnn_Rcnn_And_Faster_Rcnn\01-Convolutional_Neural_Network\01-limitations_of_mlp.mp4 [615e38209db42a9d] 29,264,087 A441502D
02-Deep_Learning_With_Cnn_Rcnn_And_Faster_Rcnn\01-Convolutional_Neural_Network\02-mlp_limitations_resolving_the_issue_with_cnn.mp4 [d20eb10c7af70a29] 22,555,775 81E1D6D2
02-Deep_Learning_With_Cnn_Rcnn_And_Faster_Rcnn\01-Convolutional_Neural_Network\03-visual_cortex_and_cnn.mp4 [467faa1c3f6825ee] 33,146,103 44B3F2A0
02-Deep_Learning_With_Cnn_Rcnn_And_Faster_Rcnn\01-Convolutional_Neural_Network\04-convolutional_layer.mp4 [260ca187fe1ffb62] 33,547,746 3BCC4FC1
02-Deep_Learning_With_Cnn_Rcnn_And_Faster_Rcnn\01-Convolutional_Neural_Network\05-working_of_convolutional_layer.mp4 [80639831745813e1] 33,547,746 590457A0
02-Deep_Learning_With_Cnn_Rcnn_And_Faster_Rcnn\01-Convolutional_Neural_Network\06-demonstration_load_and_preprocess_the_data.mp4 [b7a67657e8796c13] 44,085,668 1B61D084
02-Deep_Learning_With_Cnn_Rcnn_And_Faster_Rcnn\01-Convolutional_Neural_Network\07-demonstration_designing_the_model.mp4 [20311a3ba3b8b0fd] 55,411,098 41E71FC5
02-Deep_Learning_With_Cnn_Rcnn_And_Faster_Rcnn\01-Convolutional_Neural_Network\08-demonstration_building_the_cnn_model.mp4 [da8289fda6660f72] 39,812,435 DE35E519
02-Deep_Learning_With_Cnn_Rcnn_And_Faster_Rcnn\01-Convolutional_Neural_Network\09-demonstration_model_accuracy.mp4 [286cf5eaf554f945] 22,496,934 97C99CC5
02-Deep_Learning_With_Cnn_Rcnn_And_Faster_Rcnn\01-Convolutional_Neural_Network\10-demonstration_adding_more_layers.mp4 [1d7889ee33d1eab2] 65,418,166 26B768B3
02-Deep_Learning_With_Cnn_Rcnn_And_Faster_Rcnn\01-Convolutional_Neural_Network\11-demonstration_building_basic_cnn_model_with_new_parameters.mp4 [64b09db06efc252c] 82,003,972 278EE546
02-Deep_Learning_With_Cnn_Rcnn_And_Faster_Rcnn\01-Convolutional_Neural_Network\12-demonstration_pre_trained_model.mp4 [7abe2d7cae9e64ad] 39,190,626 2DF0DB62
02-Deep_Learning_With_Cnn_Rcnn_And_Faster_Rcnn\01-Convolutional_Neural_Network\13-why_convolutions_are_important_instructions.html 2,125 208A0311
02-Deep_Learning_With_Cnn_Rcnn_And_Faster_Rcnn\02-Tensorflow_Hub_For_Object_Detection_Using_Faster_Rcnn\01-classification_and_object_detection.mp4 [ba7b6dda528cf930] 31,262,034 6EBBC91F
02-Deep_Learning_With_Cnn_Rcnn_And_Faster_Rcnn\02-Tensorflow_Hub_For_Object_Detection_Using_Faster_Rcnn\02-introduction_to_rcnn.mp4 [586959d8c33d8f8a] 33,044,023 20DF1C6C
02-Deep_Learning_With_Cnn_Rcnn_And_Faster_Rcnn\02-Tensorflow_Hub_For_Object_Detection_Using_Faster_Rcnn\03-r_cnn_bounding_box_regression.mp4 [4c6fe40a7de78d9b] 13,062,384 B6C87EF2
02-Deep_Learning_With_Cnn_Rcnn_And_Faster_Rcnn\02-Tensorflow_Hub_For_Object_Detection_Using_Faster_Rcnn\04-pre_trained_model.mp4 [c2f86c94fbbe21d8] 30,452,217 6137F27D
02-Deep_Learning_With_Cnn_Rcnn_And_Faster_Rcnn\02-Tensorflow_Hub_For_Object_Detection_Using_Faster_Rcnn\05-fast_regional_cnn.mp4 [9163cecae38ddc6e] 33,663,170 9A281953
02-Deep_Learning_With_Cnn_Rcnn_And_Faster_Rcnn\02-Tensorflow_Hub_For_Object_Detection_Using_Faster_Rcnn\06-demonstration_creating_base_variables_and_loading_the_model.mp4 [c44473fd377370c2] 38,801,623 DE2FACB0
02-Deep_Learning_With_Cnn_Rcnn_And_Faster_Rcnn\02-Tensorflow_Hub_For_Object_Detection_Using_Faster_Rcnn\07-demonstration_training_the_model_and_visualizing_the_predictions.mp4 [c24f52fe7a2ec32f] 56,236,439 6657DB96
02-Deep_Learning_With_Cnn_Rcnn_And_Faster_Rcnn\02-Tensorflow_Hub_For_Object_Detection_Using_Faster_Rcnn\08-demonstration_svm_as_a_classifier.mp4 [3f9f509ac277c998] 24,539,562 D620E980
02-Deep_Learning_With_Cnn_Rcnn_And_Faster_Rcnn\02-Tensorflow_Hub_For_Object_Detection_Using_Faster_Rcnn\09-svm_classifier_in_object_detection_instructions.html 4,359 F5DBCB6B
02-Deep_Learning_With_Cnn_Rcnn_And_Faster_Rcnn\03-Faster_Rcnn_Recurrent_Convolutional_Neural_Network\01-fast_rcnn_limitations.mp4 [f8498695b2df35d7] 26,108,587 49AD2A06
02-Deep_Learning_With_Cnn_Rcnn_And_Faster_Rcnn\03-Faster_Rcnn_Recurrent_Convolutional_Neural_Network\02-advent_of_faster_r_cnn.mp4 [70288a6d860416b2] 26,462,813 44A1A70A
02-Deep_Learning_With_Cnn_Rcnn_And_Faster_Rcnn\03-Faster_Rcnn_Recurrent_Convolutional_Neural_Network\03-tensorflow_hub.mp4 [346002ecfc47b10c] 21,301,889 7C27C033
02-Deep_Learning_With_Cnn_Rcnn_And_Faster_Rcnn\03-Faster_Rcnn_Recurrent_Convolutional_Neural_Network\04-demonstration_object_detection_with_faster_rcnn_pretrained_model_setup.mp4 [93f56ac44fd1da53] 78,288,254 1A0FBB16
02-Deep_Learning_With_Cnn_Rcnn_And_Faster_Rcnn\03-Faster_Rcnn_Recurrent_Convolutional_Neural_Network\05-demonstration_object_detection_with_faster_rcnn_building_the_model.mp4 [a72c4a9ffc2deab4] 86,933,261 3C2C70CD
02-Deep_Learning_With_Cnn_Rcnn_And_Faster_Rcnn\03-Faster_Rcnn_Recurrent_Convolutional_Neural_Network\06-faster_r_cnn_architecture_instructions.html 6,064 6A53B3BC
02-Deep_Learning_With_Cnn_Rcnn_And_Faster_Rcnn\04-Module_Wrap_Up_And_Assessment\01-summary_of_cnn_in_deep_learning.mp4 [3c8906c152e43a9] 13,970,659 2F25B61A
02-Deep_Learning_With_Cnn_Rcnn_And_Faster_Rcnn\04-Module_Wrap_Up_And_Assessment\02-summary_of_faster_rcnn.mp4 [ed21baae778e3861] 23,571,209 534D1C18
03-Deep_Learning_With_Rnn_Lstm_And_Model_Optimization\01-Working_Of_Recurrent_Neural_Networks_Rnn\01-rnn_fundamentals.mp4 [3e1a16b4e7c0f01a] 21,490,763 2E48CB15
03-Deep_Learning_With_Rnn_Lstm_And_Model_Optimization\01-Working_Of_Recurrent_Neural_Networks_Rnn\02-rnn_architecture.mp4 [2f1655aa9dd8a274] 23,688,079 C20DE1DD
03-Deep_Learning_With_Rnn_Lstm_And_Model_Optimization\01-Working_Of_Recurrent_Neural_Networks_Rnn\03-rnn_architecture_workflow.mp4 [ab3d57dd04fa60a7] 30,327,405 358E404F
03-Deep_Learning_With_Rnn_Lstm_And_Model_Optimization\01-Working_Of_Recurrent_Neural_Networks_Rnn\04-implementing_rnn.mp4 [9399d0d08a80e8d8] 30,276,789 8B409C46
03-Deep_Learning_With_Rnn_Lstm_And_Model_Optimization\01-Working_Of_Recurrent_Neural_Networks_Rnn\05-demonstration_rnn_dataset_preparation.mp4 [6d31eab43e53f8b7] 65,053,703 ABEA08A1
03-Deep_Learning_With_Rnn_Lstm_And_Model_Optimization\01-Working_Of_Recurrent_Neural_Networks_Rnn\06-demonstration_rnn_building_the_model.mp4 [63a67e26fc3dc4fe] 65,404,595 1D08C5D5
03-Deep_Learning_With_Rnn_Lstm_And_Model_Optimization\01-Working_Of_Recurrent_Neural_Networks_Rnn\07-recurrent_neural_networks_rnns_in_deep_learning_instructions.html 20,114 37E75247
03-Deep_Learning_With_Rnn_Lstm_And_Model_Optimization\02-Lstm_Architecture\01-basics_of_lstm.mp4 [d50307b810155d95] 29,734,598 CA1F5A3F
03-Deep_Learning_With_Rnn_Lstm_And_Model_Optimization\02-Lstm_Architecture\02-lstm_structure.mp4 [1c0cabf0e3351d78] 25,417,131 D81B75C2
03-Deep_Learning_With_Rnn_Lstm_And_Model_Optimization\02-Lstm_Architecture\03-forget_gate_and_input_gate.mp4 [7c0bd4e927efc163] 21,883,193 29B76038
03-Deep_Learning_With_Rnn_Lstm_And_Model_Optimization\02-Lstm_Architecture\04-output_gate.mp4 [e86725c4c1818c34] 14,773,953 DCF0EE4D
03-Deep_Learning_With_Rnn_Lstm_And_Model_Optimization\02-Lstm_Architecture\05-importance_of_lstm_architecture.mp4 [e8972c03751d54d0] 24,157,678 686512B4
03-Deep_Learning_With_Rnn_Lstm_And_Model_Optimization\02-Lstm_Architecture\06-types_of_lstm.mp4 [9a6866266e568fdf] 20,088,319 A96609CE
03-Deep_Learning_With_Rnn_Lstm_And_Model_Optimization\02-Lstm_Architecture\07-demonstration_next_word_prediction_processing_the_corpus.mp4 [c38a6a49f42489e3] 52,597,406 961A8EDE
03-Deep_Learning_With_Rnn_Lstm_And_Model_Optimization\02-Lstm_Architecture\08-demonstration_next_word_prediction_layers.mp4 [545a270940592ba5] 61,787,248 9BB90AC4
03-Deep_Learning_With_Rnn_Lstm_And_Model_Optimization\02-Lstm_Architecture\09-demonstration_next_word_prediction_model_compilation_and_prediction.mp4 [9b56f7bf6347dc2e] 101,255,191 CA3A1FD4
03-Deep_Learning_With_Rnn_Lstm_And_Model_Optimization\02-Lstm_Architecture\10-attention_based_lstm_long_short_term_memory_instructions.html 7,592 C7867E48
03-Deep_Learning_With_Rnn_Lstm_And_Model_Optimization\02-Lstm_Architecture\11-capsule_networks_in_deep_learning_instructions.html 4,265 9DEB7CAC
03-Deep_Learning_With_Rnn_Lstm_And_Model_Optimization\03-Module_Optimization_And_Compilation\01-improving_a_model.mp4 [20af3953eaf9c5c0] 34,533,913 80A2A223
03-Deep_Learning_With_Rnn_Lstm_And_Model_Optimization\03-Module_Optimization_And_Compilation\02-model_optimization.mp4 [c939716ef8777996] 22,895,571 8555C354
03-Deep_Learning_With_Rnn_Lstm_And_Model_Optimization\03-Module_Optimization_And_Compilation\03-using_adam_optimizer.mp4 [1c2795c1c7e21e14] 33,510,880 91F19D9D
03-Deep_Learning_With_Rnn_Lstm_And_Model_Optimization\03-Module_Optimization_And_Compilation\04-model_compilation.mp4 [b07d942c18007dd3] 15,071,952 08D88BF3
03-Deep_Learning_With_Rnn_Lstm_And_Model_Optimization\03-Module_Optimization_And_Compilation\05-model_compilation_with_popular_frameworks.mp4 [d5c25384f4801362] 28,666,574 73127357
03-Deep_Learning_With_Rnn_Lstm_And_Model_Optimization\03-Module_Optimization_And_Compilation\06-demonstration_model_compilation_preparing_the_dataset.mp4 [c5fc3384b7c2506b] 58,229,780 96CE2C86
03-Deep_Learning_With_Rnn_Lstm_And_Model_Optimization\03-Module_Optimization_And_Compilation\07-demonstration_building_and_compiling_model.mp4 [1b66c5553f8840b7] 48,509,703 ECD317BF
03-Deep_Learning_With_Rnn_Lstm_And_Model_Optimization\03-Module_Optimization_And_Compilation\08-demonstration_from_rmsprop_to_adam.mp4 [38d3ebed347f6a05] 47,365,155 5C76E7E6
03-Deep_Learning_With_Rnn_Lstm_And_Model_Optimization\03-Module_Optimization_And_Compilation\09-model_optimizers_beyond_adam_instructions.html 89,448 5E55F886
03-Deep_Learning_With_Rnn_Lstm_And_Model_Optimization\04-Module_Wrap_Up_And_Assessment\01-summary_of_deep_learning_with_rnn_and_lstm_with_model_optimization.mp4 [2f1acf72806d7340] 34,475,362 4064FF4F
04-Course_Wrap_Up_And_Assessment\01-course_summary_for_practical_deep_learning_with_python.mp4 [783a0ca604e03d19] 24,526,510 9C5A519D
04-Course_Wrap_Up_And_Assessment\02-practice_project_mnist_fashion_dataset_analysis_instructions.html 65,536 223A897F
LERNSTUF\lernstuf.nfo 1,819 F3BC8590
LERNSTUF\lernstuf_introduction_2025.rar 662,425 D97798A6
Resources\01-Module_3_Datasets\deeplearning.txt 49,643 723D85FC
Resources\01-Module_3_Datasets\history.p 436 B4414EA5
Resources\01-Module_3_Datasets\next_word_model.keras 10,229,924 3C4F313E
Resources\02-Module_2_Datasets\resources.html 67,259 643B9B59

Total size: 2,853,893,064
RAR Recovery
Not Present
Labels UNKNOWN