RAR-files |
linkedin.learning.advanced.sql.for.data.scientists-xqzt.rar |
50,000,000 |
C7E51609 |
linkedin.learning.advanced.sql.for.data.scientists-xqzt.r00 |
50,000,000 |
606F27FC |
linkedin.learning.advanced.sql.for.data.scientists-xqzt.r01 |
50,000,000 |
D7CF7FD3 |
linkedin.learning.advanced.sql.for.data.scientists-xqzt.r02 |
50,000,000 |
9E41D91D |
linkedin.learning.advanced.sql.for.data.scientists-xqzt.r03 |
50,000,000 |
321DC2D2 |
linkedin.learning.advanced.sql.for.data.scientists-xqzt.r04 |
50,000,000 |
63BFA732 |
linkedin.learning.advanced.sql.for.data.scientists-xqzt.r05 |
26,074,150 |
D1FA1EF4 |
|
Total size: |
326,074,150 |
|
|
Archived
files |
01.01-advanced_sql_techniques_for_data_science.mkv
[8c78a91080116cdc]
|
5,140,228 |
61FBC0EF |
01.02-what_you_should_know.mkv
[956fcee6f2e49691]
|
1,195,724 |
7DAADE7A |
02.01-rules_of_normalization.mkv
[1047ef4f9fc1567d]
|
11,011,607 |
F84A7BEF |
02.02-denormalization.mkv
[8453e0bbbfaa9742]
|
12,016,067 |
7C9C30C9 |
02.03-partitioning_data.mkv
[be012fba4b7e20da]
|
17,657,517 |
AAA4146D |
02.04-materialized_views.mkv
[d9d186e2676e1d45]
|
17,799,481 |
980E815D |
02.05-read_replicas.mkv
[e10d2e0c717149c5]
|
6,092,571 |
628818B5 |
02.06-challenge_design_a_data_model_for_analytics.mkv
[b71c412c0717893e]
|
2,888,820 |
6EAE10D9 |
02.07-solution_design_a_data_model_for_analytics.mkv
[660a3f38381593b3]
|
4,698,694 |
CA4D2D0D |
03.01-b-tree_indexes.mkv
[275cfe0dba0757a0]
|
6,242,676 |
87E0D996 |
03.02-bitmap_indexes.mkv
[9202101665c40820]
|
5,833,999 |
2B309605 |
03.03-hash_indexes.mkv
[2d8af640554aa69a]
|
2,465,404 |
3A2C3BCC |
03.04-gist_and_sp-gist_indexes.mkv
[bafcd69fa4f9ef51]
|
3,360,456 |
746475E7 |
03.05-gin_and_brin_indexes.mkv
[c6bd8c91baf6da3b]
|
7,454,947 |
A47F157F |
03.06-challenge_choosing_an_optimal_indexing_strategy.mkv
[a12d1d31681afcf8]
|
1,760,408 |
60F163A1 |
03.07-solution_choosing_an_optimal_indexing_strategy.mkv
[ccef941047951c49]
|
2,578,238 |
803F98BC |
04.01-explain_and_analyze_commands.mkv
[eff5c56cac2a5d5d]
|
14,980,484 |
045E9B79 |
04.02-generating_data_with_generate_sequence.mkv
[3c7b9e366983c1b2]
|
11,064,753 |
9CB358B5 |
04.03-generating_time_series_data.mkv
[4734388e6babf2e9]
|
19,190,059 |
569D8528 |
04.04-analyzing_a_query_with_where_clauses_and_indexes.mkv
[ce84b278741973dc]
|
7,881,920 |
8CB564E4 |
04.05-analyzing_a_query_with_a_join.mkv
[bd0a2e1c4031ba99]
|
15,908,851 |
D5496D63 |
04.06-challenge_optimize_a_query_using_an_explain_plan.mkv
[f1b4ae6e79f7ce68]
|
1,521,665 |
2C837613 |
04.07-solution_optimize_a_query_using_an_explain_plan.mkv
[fe9ac20c1fefdfa5]
|
3,667,568 |
87B22560 |
05.01-extending_sql_with_user-defined_functions.mkv
[12ddd6ad029dfa5c]
|
5,523,049 |
7AC7CD01 |
05.02-sql_query_functions.mkv
[8d14a88e578e61c0]
|
17,140,806 |
525204FB |
05.03-function_overloading.mkv
[5f7451f05c553533]
|
13,301,406 |
183039DB |
05.04-function_volatility.mkv
[1c7ae4771ccea18e]
|
7,089,196 |
0203E917 |
05.05-plpython_functions.mkv
[8ef3ceaf3dc8cc4]
|
6,479,889 |
4AAF77CD |
05.06-challenge_write_a_user-defined_function.mkv
[6a66ccb537040b4f]
|
1,420,628 |
E8956DE1 |
05.07-solution_write_a_user-defined_function.mkv
[de774816db086fa5]
|
4,996,789 |
6550306B |
06.01-federated_queries.mkv
[4f36d450c1f4322a]
|
7,153,437 |
5CBECF4B |
06.02-bloom_filters.mkv
[7d7d43aa292570a8]
|
8,066,212 |
21CA11D0 |
06.03-hstore_for_key-value_pairs.mkv
[8899f78d80628fa6]
|
15,369,439 |
CF4311C1 |
06.04-json_for_semi-structured_data.mkv
[8c1d8798ae79dd07]
|
21,345,213 |
2A42AFEA |
06.05-hierarchical_data_and_ltrees.mkv
[f59de65c79c4f088]
|
29,513,292 |
C2D99285 |
06.06-challenge_design_a_table_to_support_unstructured_data.mkv
[70cc4c679a9a8f6f]
|
1,522,464 |
FEE43CBC |
06.07-solution_design_a_table_to_support_unstructured_data.mkv
[af327ac452d97c7]
|
2,276,649 |
9767A2BB |
07.01-next_steps.mkv
[e8f43896f17b2961]
|
2,454,374 |
CCC263BF |
Ex_Files_Adv_SQL_Data.zip |
5,541 |
4DA5008A |
|
Total size: |
326,070,521 |
|
|