RAR-files |
impart-rn166.rar |
15,000,000 |
8A939FDE |
impart-rn166.r00 |
15,000,000 |
1BA6BB6C |
impart-rn166.r01 |
15,000,000 |
F73D3F6E |
impart-rn166.r02 |
15,000,000 |
DF22CAA2 |
impart-rn166.r03 |
15,000,000 |
35B1DD6E |
impart-rn166.r04 |
15,000,000 |
13A4E143 |
impart-rn166.r05 |
15,000,000 |
EEC78B9C |
impart-rn166.r06 |
15,000,000 |
8BCE2C45 |
impart-rn166.r07 |
15,000,000 |
4771623E |
impart-rn166.r08 |
15,000,000 |
6AC724E2 |
impart-rn166.r09 |
15,000,000 |
166453C3 |
impart-rn166.r10 |
15,000,000 |
132D130A |
impart-rn166.r11 |
15,000,000 |
222024AC |
impart-rn166.r12 |
15,000,000 |
1F82596E |
impart-rn166.r13 |
15,000,000 |
9933ED10 |
impart-rn166.r14 |
15,000,000 |
3223711A |
impart-rn166.r15 |
15,000,000 |
982A7403 |
impart-rn166.r16 |
15,000,000 |
46C92E1C |
impart-rn166.r17 |
13,446,265 |
EA81160F |
|
Total size: |
283,446,265 |
|
|
Archived
files |
01 - Introduction\01 - The need for data labeling.mp4
[c6f97f5bfd78a1b0]
|
7,596,949 |
AB32C772 |
02 - Get Started with Data Labeling\01 - The data labeling process.mp4
[3da1e47ff35b69de]
|
4,971,419 |
8011323D |
02 - Get Started with Data Labeling\02 - Approaches to data labeling.mp4
[830498c8d59afe8d]
|
6,275,453 |
27D1F376 |
02 - Get Started with Data Labeling\03 - Data labeling challenges, best practices, and use cases.mp4
[7a95f3541cbd3cdd]
|
3,965,877 |
D7DCDE37 |
02 - Get Started with Data Labeling\04 - Data labeling with Azure ML.mp4
[e5957ef536695e09]
|
3,010,334 |
36095898 |
02 - Get Started with Data Labeling\05 - Setting up an Azure ML workspace.mp4
[544b9954dbb8d69e]
|
7,115,317 |
DD5A1BCF |
02 - Get Started with Data Labeling\06 - Setting up an image labeling project Creating data assets.mp4
[71a5896a28f7fb4]
|
11,931,999 |
EDB3F0FD |
02 - Get Started with Data Labeling\07 - Setting up an image labeling project Configuring settings.mp4
[bb7e7f2f8c27a2ef]
|
11,195,521 |
FCD82A63 |
02 - Get Started with Data Labeling\08 - Manual image labeling and review.mp4
[6dc35ada07205e0b]
|
11,408,775 |
CA1C5DA2 |
02 - Get Started with Data Labeling\09 - Manual labeling progress checks.mp4
[47d4b2049236cea2]
|
8,107,531 |
F0E4A88C |
03 - Perform Manual and ML-Assisted Data Labeling on Azure\01 - Automated machine learning for image classification.mp4
[fc98337260bd7234]
|
12,607,698 |
603D0AFA |
03 - Perform Manual and ML-Assisted Data Labeling on Azure\02 - Examining model training metrics.mp4
[8f19a258bd68b500]
|
8,385,535 |
81EBA820 |
03 - Perform Manual and ML-Assisted Data Labeling on Azure\03 - Data labeling project insights.mp4
[672b4060ca14bf5]
|
5,728,318 |
352698F0 |
03 - Perform Manual and ML-Assisted Data Labeling on Azure\04 - ML assisted labeling with clustering and pre-labeling.mp4
[4b74c472bff96d66]
|
7,939,287 |
66058D5C |
03 - Perform Manual and ML-Assisted Data Labeling on Azure\05 - Configuring inference for new training runs.mp4
[5117895151a0520d]
|
6,686,943 |
5D209E84 |
03 - Perform Manual and ML-Assisted Data Labeling on Azure\06 - Exploring the labeled dataset.mp4
[babca90f5ed4e9e2]
|
6,271,994 |
ED96C0DE |
04 - Use Snorkel for Data Labeling\01 - Programmatic labeling with Snorkel.mp4
[dde77abab62e9361]
|
9,013,914 |
F564BA91 |
04 - Use Snorkel for Data Labeling\02 - Installing Python libraries.mp4
[e9577d886b38cbe4]
|
9,429,511 |
0D6106E2 |
04 - Use Snorkel for Data Labeling\03 - Exploring the spam ham dataset.mp4
[b8143e2527e6ddbe]
|
16,169,704 |
D4E8B6CE |
04 - Use Snorkel for Data Labeling\04 - Writing and analyzing labeling functions.mp4
[2916a4405fb40fc1]
|
16,051,038 |
4B1E2F0F |
04 - Use Snorkel for Data Labeling\05 - Exploring other labeling functions.mp4
[8bfe1caff8ef8c40]
|
12,888,873 |
8A140CEF |
04 - Use Snorkel for Data Labeling\06 - Programmatic labeling using the majority label voter.mp4
[9cfde20cff7cff45]
|
7,442,925 |
D75AC51A |
04 - Use Snorkel for Data Labeling\07 - Scoring and comparing the label models.mp4
[f9bc33f403138361]
|
9,187,785 |
7E5AED9B |
05 - Create Diverse Labeling Functions and Models in Snorkel\01 - Increasing the number of labeling functions.mp4
[abd45192ce057166]
|
11,841,674 |
CC5CBBFA |
05 - Create Diverse Labeling Functions and Models in Snorkel\02 - Using sentiment and parts of speech tagging in labeling functions.mp4
[d9f2dc7dbf8908aa]
|
19,777,134 |
EFA5C763 |
05 - Create Diverse Labeling Functions and Models in Snorkel\03 - Evaluating labeling function metrics on test data.mp4
[4d98f1df3c24c726]
|
8,088,403 |
6D71414C |
05 - Create Diverse Labeling Functions and Models in Snorkel\04 - Using all labeling functions to label data.mp4
[9a89b41fc7384b35]
|
17,247,670 |
E0E3D324 |
05 - Create Diverse Labeling Functions and Models in Snorkel\05 - Training a classifier on programmatically generated labels.mp4
[83391195a8cfe583]
|
5,510,897 |
207091C8 |
06 - Conclusion\01 - Summary and next steps.mp4
[3fa4bb6d80c789fa]
|
1,858,377 |
D8A3D631 |
Ex_Files_Data_Labeling_for_Machine_Learning.zip |
15,732,085 |
84EE6F01 |
01 - Introduction |
0 |
00000000 |
02 - Get Started with Data Labeling |
0 |
00000000 |
03 - Perform Manual and ML-Assisted Data Labeling on Azure |
0 |
00000000 |
04 - Use Snorkel for Data Labeling |
0 |
00000000 |
05 - Create Diverse Labeling Functions and Models in Snorkel |
0 |
00000000 |
06 - Conclusion |
0 |
00000000 |
|
Total size: |
283,438,940 |
|
|