A ship in harbor is safe, but that is not what ships are built for.
―J. A. Shedd
  • Anonymous
  • 2023-11-23 11:55:25
  • Unknown

RELEASE >

ReScene version pyReScene Auto 0.7 iMPART File size CRC
Download
10,768
Stored files
249 4848F562
513 F8B0C249
RAR-files
impart-rn166.rar 15,000,000 8A939FDE
impart-rn166.r00 15,000,000 1BA6BB6C
impart-rn166.r01 15,000,000 F73D3F6E
impart-rn166.r02 15,000,000 DF22CAA2
impart-rn166.r03 15,000,000 35B1DD6E
impart-rn166.r04 15,000,000 13A4E143
impart-rn166.r05 15,000,000 EEC78B9C
impart-rn166.r06 15,000,000 8BCE2C45
impart-rn166.r07 15,000,000 4771623E
impart-rn166.r08 15,000,000 6AC724E2
impart-rn166.r09 15,000,000 166453C3
impart-rn166.r10 15,000,000 132D130A
impart-rn166.r11 15,000,000 222024AC
impart-rn166.r12 15,000,000 1F82596E
impart-rn166.r13 15,000,000 9933ED10
impart-rn166.r14 15,000,000 3223711A
impart-rn166.r15 15,000,000 982A7403
impart-rn166.r16 15,000,000 46C92E1C
impart-rn166.r17 13,446,265 EA81160F

Total size: 283,446,265
Archived files
01 - Introduction\01 - The need for data labeling.mp4 [c6f97f5bfd78a1b0] 7,596,949 AB32C772
02 - Get Started with Data Labeling\01 - The data labeling process.mp4 [3da1e47ff35b69de] 4,971,419 8011323D
02 - Get Started with Data Labeling\02 - Approaches to data labeling.mp4 [830498c8d59afe8d] 6,275,453 27D1F376
02 - Get Started with Data Labeling\03 - Data labeling challenges, best practices, and use cases.mp4 [7a95f3541cbd3cdd] 3,965,877 D7DCDE37
02 - Get Started with Data Labeling\04 - Data labeling with Azure ML.mp4 [e5957ef536695e09] 3,010,334 36095898
02 - Get Started with Data Labeling\05 - Setting up an Azure ML workspace.mp4 [544b9954dbb8d69e] 7,115,317 DD5A1BCF
02 - Get Started with Data Labeling\06 - Setting up an image labeling project Creating data assets.mp4 [71a5896a28f7fb4] 11,931,999 EDB3F0FD
02 - Get Started with Data Labeling\07 - Setting up an image labeling project Configuring settings.mp4 [bb7e7f2f8c27a2ef] 11,195,521 FCD82A63
02 - Get Started with Data Labeling\08 - Manual image labeling and review.mp4 [6dc35ada07205e0b] 11,408,775 CA1C5DA2
02 - Get Started with Data Labeling\09 - Manual labeling progress checks.mp4 [47d4b2049236cea2] 8,107,531 F0E4A88C
03 - Perform Manual and ML-Assisted Data Labeling on Azure\01 - Automated machine learning for image classification.mp4 [fc98337260bd7234] 12,607,698 603D0AFA
03 - Perform Manual and ML-Assisted Data Labeling on Azure\02 - Examining model training metrics.mp4 [8f19a258bd68b500] 8,385,535 81EBA820
03 - Perform Manual and ML-Assisted Data Labeling on Azure\03 - Data labeling project insights.mp4 [672b4060ca14bf5] 5,728,318 352698F0
03 - Perform Manual and ML-Assisted Data Labeling on Azure\04 - ML assisted labeling with clustering and pre-labeling.mp4 [4b74c472bff96d66] 7,939,287 66058D5C
03 - Perform Manual and ML-Assisted Data Labeling on Azure\05 - Configuring inference for new training runs.mp4 [5117895151a0520d] 6,686,943 5D209E84
03 - Perform Manual and ML-Assisted Data Labeling on Azure\06 - Exploring the labeled dataset.mp4 [babca90f5ed4e9e2] 6,271,994 ED96C0DE
04 - Use Snorkel for Data Labeling\01 - Programmatic labeling with Snorkel.mp4 [dde77abab62e9361] 9,013,914 F564BA91
04 - Use Snorkel for Data Labeling\02 - Installing Python libraries.mp4 [e9577d886b38cbe4] 9,429,511 0D6106E2
04 - Use Snorkel for Data Labeling\03 - Exploring the spam ham dataset.mp4 [b8143e2527e6ddbe] 16,169,704 D4E8B6CE
04 - Use Snorkel for Data Labeling\04 - Writing and analyzing labeling functions.mp4 [2916a4405fb40fc1] 16,051,038 4B1E2F0F
04 - Use Snorkel for Data Labeling\05 - Exploring other labeling functions.mp4 [8bfe1caff8ef8c40] 12,888,873 8A140CEF
04 - Use Snorkel for Data Labeling\06 - Programmatic labeling using the majority label voter.mp4 [9cfde20cff7cff45] 7,442,925 D75AC51A
04 - Use Snorkel for Data Labeling\07 - Scoring and comparing the label models.mp4 [f9bc33f403138361] 9,187,785 7E5AED9B
05 - Create Diverse Labeling Functions and Models in Snorkel\01 - Increasing the number of labeling functions.mp4 [abd45192ce057166] 11,841,674 CC5CBBFA
05 - Create Diverse Labeling Functions and Models in Snorkel\02 - Using sentiment and parts of speech tagging in labeling functions.mp4 [d9f2dc7dbf8908aa] 19,777,134 EFA5C763
05 - Create Diverse Labeling Functions and Models in Snorkel\03 - Evaluating labeling function metrics on test data.mp4 [4d98f1df3c24c726] 8,088,403 6D71414C
05 - Create Diverse Labeling Functions and Models in Snorkel\04 - Using all labeling functions to label data.mp4 [9a89b41fc7384b35] 17,247,670 E0E3D324
05 - Create Diverse Labeling Functions and Models in Snorkel\05 - Training a classifier on programmatically generated labels.mp4 [83391195a8cfe583] 5,510,897 207091C8
06 - Conclusion\01 - Summary and next steps.mp4 [3fa4bb6d80c789fa] 1,858,377 D8A3D631
Ex_Files_Data_Labeling_for_Machine_Learning.zip 15,732,085 84EE6F01
01 - Introduction 0 00000000
02 - Get Started with Data Labeling 0 00000000
03 - Perform Manual and ML-Assisted Data Labeling on Azure 0 00000000
04 - Use Snorkel for Data Labeling 0 00000000
05 - Create Diverse Labeling Functions and Models in Snorkel 0 00000000
06 - Conclusion 0 00000000

Total size: 283,438,940
RAR Recovery
Not Present
Labels UNKNOWN