RAR-files |
linkedin.learning.hands-on.natural.language.processing-xqzt.rar |
50,000,000 |
1E0512F2 |
linkedin.learning.hands-on.natural.language.processing-xqzt.r00 |
50,000,000 |
AAF527FE |
linkedin.learning.hands-on.natural.language.processing-xqzt.r01 |
47,575,673 |
4029A0A4 |
|
Total size: |
147,575,673 |
|
|
Archived
files |
01.01-gain_insights_from_unstructured_text_data.mkv
[de2e05cafddeaf89]
|
3,788,996 |
731C39F2 |
01.02-what_you_should_know.mkv
[55a4ce98c6e6d769]
|
517,934 |
48C23C60 |
01.03-exercise_files.mkv
[95a40c35289562f8]
|
2,667,266 |
FB6ADA1B |
02.01-what_is_named_entity_recognition_(ner).mkv
[174510b4b4a0f942]
|
6,364,803 |
6E048A16 |
02.02-ner_with_spacy.mkv
[6fea2ed7664be6e7]
|
8,226,074 |
13B1F691 |
02.03-data_preprocessing_for_custom_ner.mkv
[f3fc49c743271e94]
|
10,844,615 |
EAD09EAD |
02.04-custom_model_training_with_spacy.mkv
[de47c46eb8b563b]
|
10,372,856 |
B5D1E4DC |
03.01-introduction_to_topic_modeling.mkv
[cfc8feac2061fae6]
|
6,114,231 |
1CFE8C41 |
03.02-data_preprocessing_for_topic_modeling.mkv
[921bd4fba8ad6e95]
|
14,958,384 |
D059740C |
03.03-topic_modeling_with_gensim.mkv
[9ba4de9ff62c69ba]
|
17,664,702 |
5CFB132D |
03.04-topic_modeling_visualization_with_pyldavis.mkv
[e273224204faf643]
|
8,595,004 |
26D57338 |
03.05-model_evaluation_for_topic_modeling.mkv
[9da99abb056216a2]
|
4,797,552 |
DF579A34 |
04.01-what_is_text_summarization.mkv
[ad4d05fc22e0d8a]
|
4,957,029 |
82EE707F |
04.02-text_extraction_for_summarization.mkv
[42310597925ddddd]
|
12,216,153 |
EF6AF470 |
04.03-text_summarization_with_sumy.mkv
[de03e59e6c0a7e23]
|
8,484,714 |
DEED18BF |
05.01-what_is_sentiment_analysis.mkv
[b3137a50cc7524dc]
|
7,171,464 |
4C41CC4D |
05.02-sentiment_analysis_with_vader.mkv
[27fa504428ffe0ba]
|
6,958,276 |
4BB3FF4B |
05.03-sentiment_analysis_with_transformers.mkv
[d34f6f304275732d]
|
7,375,322 |
AB88F8F7 |
06.01-next_steps.mkv
[377cef54b4786250]
|
921,357 |
E0610329 |
Ex_Files_Hands_On_Natural_Language_Processing.zip |
4,577,128 |
B80A0AA3 |
|
Total size: |
147,573,860 |
|
|