You can use shift-click to select all checkboxes in between.
  • Anonymous
  • 2025-01-25 08:46:55
  • Unknown

RELEASE >

ReScene version pyReScene Auto 0.7 XQZT File size CRC
Download
39,474
Stored files
629 24A6861A
27,318 41AFAA3B
902 5784D5C1
RAR-files
linkedin.learning.power.bi.integrating.ai.and.machine.learning-xqzt.rar 200,000,000 2AC763C2
linkedin.learning.power.bi.integrating.ai.and.machine.learning-xqzt.r00 200,000,000 1B16D697
linkedin.learning.power.bi.integrating.ai.and.machine.learning-xqzt.r01 200,000,000 E8C9D204
linkedin.learning.power.bi.integrating.ai.and.machine.learning-xqzt.r02 200,000,000 7B2419FB
linkedin.learning.power.bi.integrating.ai.and.machine.learning-xqzt.r03 200,000,000 2636C271
linkedin.learning.power.bi.integrating.ai.and.machine.learning-xqzt.r04 200,000,000 C3EDBD5B
linkedin.learning.power.bi.integrating.ai.and.machine.learning-xqzt.r05 200,000,000 A3928D74
linkedin.learning.power.bi.integrating.ai.and.machine.learning-xqzt.r06 200,000,000 C07DBF9C
linkedin.learning.power.bi.integrating.ai.and.machine.learning-xqzt.r07 200,000,000 3F8E6FAA
linkedin.learning.power.bi.integrating.ai.and.machine.learning-xqzt.r08 200,000,000 E963EF47
linkedin.learning.power.bi.integrating.ai.and.machine.learning-xqzt.r09 2,964,674 0B4EA0D3

Total size: 2,002,964,674
Archived files
01.01-the_power_of_power_bi.mkv [2ad1fad451eab1f] 4,759,289 28FB24B1
01.02-what_you_should_know.mkv [375f066bb4006cc4] 2,555,552 A830B40A
01.03-overviewing_ai_and_machine_learning_types.mkv [d005886cac12450f] 6,393,782 7349A80A
01.04-defining_dimensionality.mkv [575cfd93e5538c4b] 3,335,056 6CB5A7D2
01.05-utilizing_the_power_bi_ecosystem_and_azure.mkv [a00900ac647e5f4d] 4,732,448 1D8E4B1E
01.06-configuring_r_in_power_bi_desktop.mkv [157607dbb3784016] 8,366,149 218B9576
01.07-introducing_the_course_project.mkv [c04b5b9dd595b9db] 8,090,985 2CA90129
02.01-utilizing_ai_in_the_etl_framework.mkv [65981b8837285093] 16,087,843 2F3C0220
02.02-configuring_parameters.mkv [e4f98b63c002ecab] 17,927,678 788A0ACE
02.03-analyzing_dataset_statistics_and_distributions.mkv [8e6559c4fe636e5d] 12,653,416 7F80BA3B
02.04-configuring_separate_error_logs_for_existing_datasets.mkv [28722d9259887ab2] 19,255,016 38EC892B
02.05-running_vision_algorithms.mkv [e7c0f35d146a5d6f] 13,545,252 CC264894
02.06-utilizing_text_analytics_algorithms.mkv [740d5960e8494d4e] 11,651,890 5D3E178E
02.07-leveraging_ai_and_the_star_schema.mkv [9405e94b34b97936] 19,175,483 1C8F9FCC
02.08-adjusting_datetime_fields_for_lags.mkv [35a4b895dcce1d0b] 16,566,197 67CF7506
03.01-configurating_aggregations_and_dimensionality.mkv [ad7166610d7c9680] 16,562,672 F965F83F
03.02-filtering_options.mkv [8717a290bb835209] 19,918,325 FFF55C57
03.03-calculating_dax_measures.mkv [fd696f753c8a35fe] 19,901,785 7DB9942F
03.04-challenge_single_variable.mkv [59c2df82cb8b6a4f] 4,566,122 7C7943A8
03.05-calculating_rolling_averages.mkv [eb7bae21556c5a5] 21,141,269 DB1BA489
03.06-utilizing_binning_to_create_histograms.mkv [70d0cdb862f12f21] 15,527,318 B5F196F2
03.07-summarizing_statistics.mkv [86857c337c97c2e4] 15,746,747 7DB8CF59
03.08-splitting_a_category_with_small_multiples.mkv [d033f0eddc784040] 7,871,816 0FDBD114
03.09-leveraging_violin_plots.mkv [a9b87e12242ff419] 13,122,652 29B8FFB5
03.10-solution_single_variable.mkv [e83754e537af7672] 11,009,262 9813AB5D
04.01-visualizing_relationships_with_scatter_plots.mkv [ef62caace039cf48] 16,809,920 4FB6DBE9
04.02-accessing_the_analytics_pane.mkv [611b238358d3a0e0] 13,103,297 BF94DCB3
04.03-calculating_correlations.mkv [7b22071ea95e236c] 20,164,078 783B294C
04.04-visualizing_correlations.mkv [67a9aca808bef442] 22,310,769 99224DB3
04.05-adding_clustering_to_existing_visuals.mkv [39c24c6d0c713803] 14,082,224 C43E29E8
04.06-calculating_best_fit_line.mkv [259266cc2e4ddfcf] 32,584,703 FA4D048D
04.07-utilizing_the_outlier_detection_visual.mkv [3c94d976e5da4f0f] 13,885,536 406B4806
04.08-calculating_outliers.mkv [ff5d2839ee6fca6] 12,338,843 EEFA8D72
04.09-contextualizing_outliers.mkv [bfe250d496845ab1] 8,493,037 7F564F07
04.10-challenge_multiple_variables.mkv [c5889c990e3e9f9b] 1,520,013 31E8018A
04.11-solution_multiple_variables.mkv [76535da340bacff9] 14,145,852 CA1DCFF0
05.01-determining_key_drivers_with_decomposition_tree_visual.mkv [931726df5b702c1e] 12,172,214 B2E4C414
05.02-leveraging_the_qanda_visual.mkv [60fbb35e7dcd6ee8] 15,427,199 8FBA2734
05.03-discovering_key_insights_with_the_key_influencer_visual.mkv [af426f2c316d8bcf] 9,836,222 9646F8C4
05.04-utilizing_parameters_to_model_what-if_scenarios.mkv [92a333f6188da11] 17,805,481 6130440D
05.05-challenge_ai_visuals.mkv [e314df67d38ef1c] 1,285,460 63B299CE
05.06-solution_ai_visuals.mkv [64e3e82ad4a63a29] 11,293,353 651497B4
06.01-organizing_time_series_analysis.mkv [c0efb7794c0138f5] 19,754,274 D34F833B
06.02-adding_forecasting_from_the_analytics_pane.mkv [56df826400cb8d06] 6,399,069 14168127
06.03-leveraging_anomaly_detection.mkv [949a781b767ea4a5] 23,639,489 E227B543
06.04-utilizing_arima_forecasting.mkv [9749646fe1bbc6b6] 10,397,979 C02EDAB5
06.05-incorporating_seasonality_through_tbats_forecasting.mkv [88a8ad7ed6b77dd3] 16,034,946 A5E8CFD9
06.06-analyzing_predictions_vs._actuals.mkv [32b27bc541cfc099] 24,864,186 E9B33276
06.07-challenge_time_series_analysis.mkv [40825e9577d15f6] 1,811,122 00E15180
06.08-solution_time_series_analysis.mkv [80674c21a8cdbef0] 4,854,062 5A2D188A
07.01-designing_a_consolidated_view_for_sharing.mkv [400b8b64dbfaeea1] 17,403,920 FF46EF48
07.02-uploading_and_sharing_in_the_power_bi_service.mkv [cfc75c91b0a7f259] 10,918,565 93D95CBF
07.03-configuring_quick_insights.mkv [476bfb297fc2e021] 10,500,614 3F657C59
07.04-challenge_shared_view.mkv [1979e28719333f7] 2,752,493 9A2D1BF9
07.05-solution_shared_view.mkv [8ebbcee93b3ce8f] 9,195,820 C84DB231
08.01-how_to_learn_ml_and_ai_in_power_bi.mkv [c8e0f007c0953338] 1,837,439 A1C56FD9
Ex_Files_Power_BI_AI_and_Machine_Learning.zip 1,294,872,776 24AD2BBC

Total size: 2,002,958,959
Video files
Sample
linkedin.learning.power.bi.integrating.ai.and.machine.learning-xqzt-sample.mkv 1,757,078 6444F968
RAR Recovery
Not Present
Labels UNKNOWN