iNFekt and jane are able to display the NFOs inside SRRs.
  • Anonymous
  • 2022-09-27 21:16:54
  • Unknown

RELEASE >

ReScene version pyReScene Auto 0.7 XQZT File size CRC
Download
34,282
Stored files
565 81D2AF8C
27,280 A551DECC
252 73FD562B
RAR-files
linkedin.learning.recurrent.neural.networks-xqzt.rar 50,000,000 B299EF30
linkedin.learning.recurrent.neural.networks-xqzt.r00 50,000,000 1B5A8F1E
linkedin.learning.recurrent.neural.networks-xqzt.r01 50,000,000 3BD0712C
linkedin.learning.recurrent.neural.networks-xqzt.r02 5,713,104 DF99D455

Total size: 155,713,104
Archived files
01.01-getting_started_with_rnns.mkv [88cb17867feabf02] 2,833,494 454B97AD
01.02-scope_and_prerequisites_for_the_course.mkv [ca19ebf00727ba7e] 3,426,010 CB75A699
01.03-setting_up_exercise_files.mkv [1bc18182cb8ca7d] 6,731,111 46BDAA20
02.01-a_review_of_deep_learning.mkv [61e4fd1c41ad5467] 3,591,555 227CC881
02.02-why_sequence_models.mkv [905f07aa776b9d15] 3,256,786 D7D171F3
02.03-a_recurrent_neural_network.mkv [c45e6791255f2a6b] 3,952,118 9D2DF796
02.04-types_of_rnns.mkv [539dd76d7b47e503] 3,482,981 4D7F4F99
02.05-applications_of_rnns.mkv [20121d243704dcce] 2,468,066 15397A66
03.01-training_rnn_models.mkv [ad14f58f67d5dc04] 2,203,347 6792D111
03.02-forward_propagation_with_rnn.mkv [41e0e891378d017a] 3,646,758 DA6E77A2
03.03-computing_rnn_loss.mkv [e1c154384a7c18c] 1,690,992 71521ADA
03.04-backward_propagation_with_rnn.mkv [78a7386af8d49429] 2,255,789 00CFF997
03.05-predictions_with_rnn.mkv [4b9363f438a3376c] 1,428,575 DC44AFCD
04.01-a_simple_rnn_example_predicting_stock_prices.mkv [869784a0c392f183] 3,979,868 06AC32A2
04.02-data_preprocessing_for_rnn.mkv [9b633ae5f98d16b7] 3,389,666 C2D8BEA0
04.03-preparing_time_series_data_with_lookback.mkv [c6114f52f6b12162] 5,466,264 44E3793E
04.04-creating_an_rnn_model.mkv [a129718899a05ab3] 5,231,112 68A7ED94
04.05-testing_and_predictions_with_rnn.mkv [24a768e455fd6e39] 5,713,339 53F99BBA
05.01-the_vanishing_gradient_problem.mkv [20c0fefad2404740] 3,394,474 CE3ACB42
05.02-the_gated_recurrent_unit.mkv [936a336574f748f3] 5,254,478 C05AF229
05.03-long_short-term_memory.mkv [7dead90ee082eda0] 3,336,782 715F3C56
05.04-bidirectional_rnns.mkv [f1ac9bf41ddb1e09] 4,460,728 42A1AE10
06.01-forecasting_service_loads_with_lstm.mkv [c390426b7d451319] 3,362,623 9CB62F62
06.02-time_series_patterns.mkv [badbd271f950f62b] 5,474,816 83F2C22E
06.03-preparing_time_series_data_for_lstm.mkv [dfe0dc310652a9cb] 4,814,631 47BF5DB3
06.04-creating_an_lstm_model.mkv [318f0fbe3ce6c9d2] 2,613,919 5100407D
06.05-testing_the_lstm_model.mkv [2104add9c58f2534] 5,939,412 F3A9A39C
06.06-forecasting_service_loads_predictions.mkv [a8c398897721b55] 7,332,296 11E3AB91
07.01-text_based_models_challenges.mkv [11cf81358e3b27b8] 2,892,684 6A2EF080
07.02-intro_to_word_embeddings.mkv [885e5a11caf80847] 7,036,808 B90BEFBB
07.03-pretrained_word_embeddings.mkv [95b6e166b377d292] 4,449,318 D3D16E9E
07.04-text_preprocessing_for_rnn.mkv [da35eb2a8cc6c383] 3,095,038 75406530
07.05-creating_an_embedding_matrix.mkv [e695a520a486512f] 2,115,800 3EA9A618
08.01-spam_detection_example_for_embeddings.mkv [b3995257fe64c6c] 3,672,759 9CCC03F5
08.02-preparing_spam_data_for_training.mkv [ebdc5a5d8d708faf] 6,358,062 F8F2146F
08.03-building_the_embedding_matrix.mkv [7ce6d9aa4816e1bd] 7,295,570 BA26DF72
08.04-creating_a_spam_classification_model.mkv [318ffed14b600d62] 3,885,670 89DAAF75
08.05-predicting_spam_with_lstm_and_word_embeddings.mkv [852da35183d88e6] 2,596,360 A833B61A
09.01-next_steps.mkv [31eea7129af06e8b] 1,579,759 4ED887DB

Total size: 155,709,818
Video files
Sample
linkedin.learning.recurrent.neural.networks-xqzt-sample.mkv 1,712,237 71921FA8
RAR Recovery
Not Present
Labels UNKNOWN