When it's fine, it's fine.
  • Anonymous
  • 2021-08-29 21:08:56
  • Unknown

RELEASE >

ReScene version pyReScene Auto 0.7 XQZT File size CRC
Download
69,262
Stored files
639 2460BC1C
26,041 DADDFA1F
1,863 460CCB0A
RAR-files
packt.nlp-natural.language.processing.in.python.for.beginners-xqzt.rar 650,000,000 2FB2BBC3
packt.nlp-natural.language.processing.in.python.for.beginners-xqzt.r00 650,000,000 8889121F
packt.nlp-natural.language.processing.in.python.for.beginners-xqzt.r01 650,000,000 FAE4EC56
packt.nlp-natural.language.processing.in.python.for.beginners-xqzt.r02 650,000,000 978E0DA8
packt.nlp-natural.language.processing.in.python.for.beginners-xqzt.r03 650,000,000 06C161D1
packt.nlp-natural.language.processing.in.python.for.beginners-xqzt.r04 650,000,000 4BCF6F1D
packt.nlp-natural.language.processing.in.python.for.beginners-xqzt.r05 650,000,000 9A0F9567
packt.nlp-natural.language.processing.in.python.for.beginners-xqzt.r06 650,000,000 EAC7DF7C
packt.nlp-natural.language.processing.in.python.for.beginners-xqzt.r07 650,000,000 3212E32D
packt.nlp-natural.language.processing.in.python.for.beginners-xqzt.r08 650,000,000 13868F46
packt.nlp-natural.language.processing.in.python.for.beginners-xqzt.r09 650,000,000 78172AAF
packt.nlp-natural.language.processing.in.python.for.beginners-xqzt.r10 650,000,000 EF85A154
packt.nlp-natural.language.processing.in.python.for.beginners-xqzt.r11 650,000,000 6DFDC54D
packt.nlp-natural.language.processing.in.python.for.beginners-xqzt.r12 650,000,000 53B60541
packt.nlp-natural.language.processing.in.python.for.beginners-xqzt.r13 650,000,000 3B423D98
packt.nlp-natural.language.processing.in.python.for.beginners-xqzt.r14 650,000,000 404C28FA
packt.nlp-natural.language.processing.in.python.for.beginners-xqzt.r15 650,000,000 5814190B
packt.nlp-natural.language.processing.in.python.for.beginners-xqzt.r16 650,000,000 03B161AE
packt.nlp-natural.language.processing.in.python.for.beginners-xqzt.r17 650,000,000 C02679B8
packt.nlp-natural.language.processing.in.python.for.beginners-xqzt.r18 650,000,000 5CDB7C63
packt.nlp-natural.language.processing.in.python.for.beginners-xqzt.r19 650,000,000 E58A5B31
packt.nlp-natural.language.processing.in.python.for.beginners-xqzt.r20 650,000,000 456F2A00
packt.nlp-natural.language.processing.in.python.for.beginners-xqzt.r21 161,963,896 2B3C470B

Total size: 14,461,963,896
Archived files
01.01-introduction_to_the_course.mkv [97ec82a19778fcb9] 11,653,699 DE8B3A7B
01.02-introduction_to_the_instructor.mkv [b61569ac7f8fffc] 52,673,464 B590F1F6
01.03-introduction_to_the_co-instructor.mkv [f31a8f1db09be21b] 8,415,422 05154EB0
01.04-course_introduction.mkv [39010871b86ff12c] 129,661,061 97AD6DA9
02.01-what_is_regular_expression.mkv [198fd2c8475ea4e8] 59,492,625 516AC1A8
02.02-why_regular_expression.mkv [9b5e3255d23322f6] 62,189,063 9D97B7D3
02.03-eliza_chatbot.mkv [e3471f506e2f7c76] 50,568,431 10C51F26
02.04-python_regular_expression_package.mkv [de07b9574db2b3b0] 37,145,026 866BD9F0
03.01-metacharacters.mkv [e400fd9da2cd3be] 20,183,899 7C0A3B5B
03.02-metacharacters_bigbrackets_exercise.mkv [9a7759c64f06e9dc] 41,035,254 F42CBB36
03.03-meta_characters_bigbrackets_exercise_solution.mkv [29c454f494f8efd3] 33,293,251 784832BB
03.04-metacharacters_bigbrackets_exercise_2.mkv [21b9fe2189b4f2d9] 23,000,392 5435B63D
03.05-metacharacters_bigbrackets_exercise_2-solution.mkv [9938686ba43208b3] 39,847,597 FBF00D61
03.06-metacharacters_cap.mkv [8ec98698c3f656d1] 24,261,921 6493CD6A
03.07-metacharacters_cap_exercise_3.mkv [6faf2817350c3141] 24,058,160 65389E57
03.08-metacharacters_cap_exercise_3-solution.mkv [bd079a01a6421550] 55,319,529 FC7BE40C
03.09-backslash.mkv [b5677e2353185ad0] 42,587,518 C9C517CE
03.10-backslash_continued.mkv [27c949f460293fd0] 62,450,107 F49A6F8E
03.11-backslash_continued-01.mkv [77c9689039af186f] 32,819,912 5D2EC84C
03.12-backslash_squared_brackets_exercise.mkv [3f85c64c803dbaa1] 14,840,321 11FDC834
03.13-backslash_squared_brackets_exercise_solution.mkv [4834729c9820d3ea] 34,041,113 359A2B06
03.14-backslash_squared_brackets_exercise-another_solution.mkv [49cd96ac0b618f48] 46,553,452 EC7B11C8
03.15-backslash_exercise.mkv [ff05a8f62b236e1a] 15,121,322 7B022454
03.16-backslash_exercise_solution_and_special_sequences_exercise.mkv [9ebd7129b4f8f154] 47,228,772 849501F5
03.17-solution_and_special_sequences_exercise_solution.mkv [f23ab2b049979c48] 56,497,424 4B31A5AE
03.18-metacharacter_asterisk.mkv [cc02e90db58d106f] 46,107,809 FE14FB6B
03.19-metacharacter_asterisk_exercise.mkv [e826ab5b97194c04] 70,684,724 3A76DE91
03.20-metacharacter_asterisk_exercise_solution.mkv [60e28f28424cd114] 69,264,881 DFEB1A16
03.21-metacharacter_asterisk_homework.mkv [2313585d7b33dac] 46,489,764 F5D383BB
03.22-metacharacter_asterisk_greedy_matching.mkv [7d9796fa822c5189] 77,949,843 08D1E0F1
03.23-metacharacter_plus_and_question_mark.mkv [c53beeca9002c75b] 58,969,290 EFC6DB3C
03.24-metacharacter_curly_brackets_exercise.mkv [95daaa7c7c1f03e5] 34,887,256 D22ED033
03.25-metacharacter_curly_brackets_exercise_solution.mkv [9cc4888a977ff7b7] 55,505,464 BBDC0C9D
04.01-pattern_objects.mkv [c59c10cee1eef5c8] 46,370,063 78EE6F08
04.02-pattern_objects_match_method_exercise.mkv [65db6a898f7b7736] 25,429,755 9353A06F
04.03-pattern_objects_match_method_exercise_solution.mkv [9bb0e7bcbfb6507f] 63,361,496 D6D0CDAC
04.04-pattern_objects_match_method_versus_search_method.mkv [18b7a7dad90ddaa8] 57,870,613 1A3E0696
04.05-pattern_objects_finditer_method.mkv [676ba3724cfc2c52] 39,223,305 ACA35BD0
04.06-pattern_objects_finditer_method_exercise_solution.mkv [d28834959a161c67] 87,655,942 CEA00E37
05.01-metacharacters_logical_or.mkv [db69be40d95e7cc3] 67,587,141 D3463433
05.02-metacharacters_beginning_and_end_patterns.mkv [1b5f139b2c4405ca] 42,339,543 1E56451C
05.03-metacharacters_parentheses.mkv [3d45929ae8d17c65] 63,075,329 B81C5140
06.01-string_modification.mkv [4a5586419c6f5daf] 33,205,414 59116E5A
06.02-word_tokenizer_using_split_method.mkv [a0fb10944b94b161] 37,677,018 3D7758F6
06.03-sub_method_exercise.mkv [aaad02d49b57444d] 39,504,857 B9D100FE
06.04-sub_method_exercise_solution.mkv [c6ad81970ad2bac7] 41,776,516 81D33C48
07.01-what_is_a_word.mkv [e6c021c49b2e08f1] 39,234,464 0BAB531C
07.02-definition_of_word_is_task_dependent.mkv [e916b39415a094fb] 48,773,108 72B619F7
07.03-vocabulary_and_corpus.mkv [5eaf85c3bc542dec] 49,239,061 690D15A2
07.04-tokens.mkv [52afab0776d6d79f] 25,778,334 56F30AFF
07.05-tokenization_in_spacy.mkv [ea62224152128130] 74,263,569 A2CE349F
08.01-yelp_reviews_classification_mini_project_introduction.mkv [aeec7cba48fd93d6] 109,174,936 0CDFA2C2
08.02-yelp_reviews_classification_mini_project_vocabulary_initialization.mkv [ba21d7e07dc40449] 64,972,279 F602E8A7
08.03-yelp_reviews_classification_mini_project_adding_tokens_to_vocabulary.mkv [462b287fe4a2d94e] 43,970,295 3479C693
08.04-yelp_reviews_classification_mini_project_look_up_functions_in_vocabulary.mkv [fde828bc0ff97139] 59,408,077 E02B45A4
08.05-yelp_reviews_classification_mini_project_building_vocabulary_from_data.mkv [580a22cecadc4a7d] 93,479,050 851FB402
08.06-yelp_reviews_classification_mini_project_one-hot_encoding.mkv [4a29c4445a1d24c] 51,246,784 28C71E6D
08.07-yelp_reviews_classification_mini_project_one-hot_encoding_implementation.mkv [a0c0baa7a2a5c6b6] 95,170,593 D0590CCF
08.08-yelp_reviews_classification_mini_project_encoding_documents.mkv [9e0b48962ea006fb] 58,461,734 F901A9BE
08.09-yelp_reviews_classification_mini_project_encoding_documents_implementation.mkv [a578b712913f20e] 57,845,160 EE54975A
08.10-yelp_reviews_classification_mini_project_train_test_splits.mkv [9087802a53d06042] 36,773,022 5ED5392B
08.11-yelp_reviews_classification_mini_project_feature_computation.mkv [5e293f0fba0939d] 62,784,735 8B4CD3EC
08.12-yelp_reviews_classification_mini_project_classification.mkv [b5ba8a124174683d] 117,656,335 AB74AD44
09.01-tokenization_in_detial_introduction.mkv [902f2fc7beba3ff4] 34,076,040 0C17D98F
09.02-tokenization_is_hard.mkv [da87e7a2f372954] 55,056,670 46BEA303
09.03-tokenization_byte_pair_encoding.mkv [6f21af201211db00] 55,768,978 A71EB818
09.04-tokenization_byte_pair_encoding_example.mkv [c5d446ee701711dd] 76,498,729 0FA58BAC
09.05-tokenization_byte_pair_encoding_on_test_data.mkv [63c5df6592e8fbac] 81,048,999 4B55F29F
09.06-tokenization_byte_pair_encoding_implementation_get_pair_counts.mkv [514ec91a75950484] 67,038,780 9427B790
09.07-tokenization_byte_pair_encoding_implementation_merge_in_corpus.mkv [4907df11bae9819a] 69,522,064 9DC0DCC8
09.08-tokenization_byte_pair_encoding_implementation_bfe_training.mkv [71e964fd16603f5f] 57,437,455 2F01B459
09.09-tokenization_byte_pair_encoding_implementation_bfe_encoding.mkv [495e375322e0be92] 51,025,068 C80E003B
09.10-tokenization_byte_pair_encoding_implementation_bfe_encoding_one_pair.mkv [12145c310261d4e2] 90,477,825 DE0ECA8A
09.11-tokenization_byte_pair_encoding_implementation_bfe_encoding_one_pair_1.mkv [7dfafeb9d05b2be0] 94,233,840 60C57C6A
10.01-word_normalization_case_folding.mkv [49f8646ce0dbd790] 30,299,614 0C35F380
10.02-word_normalization_lemmatization.mkv [d4f2ec02b2c75e35] 54,490,382 E39F0C36
10.03-word_normalization_stemming.mkv [38c670bfeb6f1f24] 23,968,895 C02BC5C4
10.04-word_normalization_sentence_segmentation.mkv [fa1d634694acaa6d] 62,623,853 2FA48F54
11.01-spelling_correction_minimum_edit_distance_introduction.mkv [f1a988ac8ab4d612] 78,730,655 EF90BE1E
11.02-spelling_correction_minimum_edit_distance_example.mkv [725dbab419f84b0f] 86,708,631 4F097059
11.03-spelling_correction_minimum_edit_distance_table_filling.mkv [6dd1148e6fa1068] 91,667,144 4421DB67
11.04-spelling_correction_minimum_edit_distance_dynamic_programming.mkv [ab835088c0b7a71e] 62,987,325 5959FA61
11.05-spelling_correction_minimum_edit_distance_pseudocode.mkv [33b518a7e99c1997] 40,050,732 23694E21
11.06-spelling_correction_minimum_edit_distance_implementation.mkv [140b535a46a22c1a] 68,327,004 98EEEB39
11.07-spelling_correction_minimum_edit_distance_implementation_bug_fixing.mkv [a367f0eda5a3303c] 32,004,302 F8271FFC
11.08-spelling_correction_implementation.mkv [b723c71f7c72a520] 68,169,983 78275490
12.01-what_is_a_language_model.mkv [9dcfdd7469e508a] 48,363,683 477B9D53
12.02-language_model_formal_definition.mkv [2f6af9c96c0939f3] 45,048,629 FBD0BC9C
12.03-language_model_curse_of_dimensionality.mkv [b8bd45f3b0a67058] 31,736,122 6544F3B9
12.04-language_model_markov_assumption_and_n-grams.mkv [1e5f13654e2a24dd] 66,546,711 305A8830
12.05-language_model_implementation_setup.mkv [d1e630b0f75e6dab] 39,061,627 113AF186
12.06-language_model_implementation_n-grams_function.mkv [bccf50d46aa8c0d9] 81,527,389 B4EC29C8
12.07-language_model_implementation_update_counts_function.mkv [8ceb51715089e234] 58,254,700 E5712F9C
12.08-language_model_implementation_probability_model_function.mkv [619eca341ee16135] 65,246,897 2ABD079B
12.09-language_model_implementation_reading_corpus.mkv [960e1579b287d1fb] 130,330,797 2EB0D486
12.10-language_model_implementation_sampling_text.mkv [82ae1e1f2cb38e37] 205,783,536 554D79F3
13.01-one-hot_vectors.mkv [9f6952ca6eb24bf5] 30,038,510 687077B6
13.02-one-hot_vectors_implementation.mkv [23814dd0e52d945d] 47,814,171 3D12A1CE
13.03-one-hot_vectors_limitations.mkv [82d163d1329d0029] 36,412,803 8E03B739
13.04-one-hot_vectors_used_as_target_labeling.mkv [af81e37c394092e] 29,995,717 573DB939
13.05-term_frequency_for_document_representations.mkv [2ad46a94066aa3d3] 28,778,649 D827B197
13.06-term_frequency_for_document_representations_implementations.mkv [bdcbb7f4fefb4194] 49,837,436 72D63437
13.07-term_frequency_for_word_representations.mkv [3d540fa8d04fa128] 45,127,533 C791EFD5
13.08-tfidf_for_document_representations.mkv [5ad9440153555aec] 42,951,424 9B05206B
13.09-tfidf_for_document_representations_implementation_reading_corpus.mkv [550097e5f28f1a0c] 44,407,615 E29E83CE
13.10-tfidf_for_document_representations_implementation_computing_document_frequency.mkv [ff5760405c17311e] 49,885,164 196D6EC0
13.11-tfidf_for_document_representations_implementation_computing_tfidf.mkv [80969d5ed15ee9ae] 86,959,628 F7C3CC63
13.12-topic_modeling_with_tfidf_1.mkv [c14f93e3fe42e7cf] 38,558,833 38E5F5B5
13.13-topic_modeling_with_tfidf_2.mkv [fb81e6362c9b83ed] 42,970,655 7A90F555
13.14-topic_modeling_with_tfidf_3.mkv [2ea9e69751d81c4d] 49,736,673 C0DF8ADF
13.15-topic_modeling_with_tfidf_4.mkv [c5f005ebd33c53cf] 50,771,152 FB0B3973
13.16-topic_modeling_with_gensim.mkv [e1355705431cfa52] 189,278,785 2A532363
14.01-word_co-occurrence_matrix.mkv [d8c8f52f69bf8c4] 53,981,205 1A1FC2D9
14.02-word_co-occurrence_matrix_versus_document-term_matrix.mkv [1088bd1dacc3ea7f] 54,948,620 BF740105
14.03-word_co-occurrence_matrix_implementation_preparing_data.mkv [73f1076fb139ba9b] 42,141,305 43D9A754
14.04-word_co-occurrence_matrix_implementation_preparing_data_2.mkv [36e9b4b54268fb24] 38,836,440 8BCCDD58
14.05-word_co-occurrence_matrix_implementation_preparing_data_getting_vocabulary.mkv [3cc1eba57e380d3a] 42,524,740 3FE9C63C
14.06-word_co-occurrence_matrix_implementation_final_function.mkv [f743b3662a03ed5f] 129,745,169 7AFC0FE1
14.07-word_co-occurrence_matrix_implementation_handling_memory_issues_on_large_corpora.mkv [ec827bf83e37dfc] 128,538,400 FA95BEFB
14.08-word_co-occurrence_matrix_sparsity.mkv [59232d67c6f80939] 51,412,052 8200D3F4
14.09-word_co-occurrence_matrix_positive_point_wise_mutual_information_ppmi.mkv [d1e2feba82b1b6e9] 72,260,250 2E505577
14.10-pca_for_dense_embeddings.mkv [3281071ba7dbee] 42,066,038 E18856CD
14.11-latent_semantic_analysis.mkv [f57b9a3bd109b228] 34,526,261 F52B6B6E
14.12-latent_semantic_analysis_implementation.mkv [4e000f15f7aa26e0] 80,117,701 F3021706
15.01-cosine_similarity.mkv [26ff80d948f17ac8] 59,001,199 1DB3547D
15.02-cosine_similarity_getting_norms_of_vectors.mkv [6920a7d214e4b0a8] 118,510,120 B39FBBC1
15.03-cosine_similarity_normalizing_vectors.mkv [58dbc4a8f3037ea4] 71,332,790 ED5204A5
15.04-cosine_similarity_with_more_than_one_vector.mkv [61d67fc03f4c30be] 115,655,100 97F1A089
15.05-cosine_similarity_getting_most_similar_words_in_the_vocabulary.mkv [88638b38f838158f] 108,467,275 27E5950F
15.06-cosine_similarity_getting_most_similar_words_in_the_vocabulary_fixing_bug.mkv [285e0e9c8a1567de] 90,930,188 5F518770
15.07-cosine_similarity_word2vec_embeddings.mkv [cd645319bfc5d985] 97,861,179 A87E9E0F
15.08-word_analogies.mkv [a56085187bf6e301] 43,716,485 ED81280D
15.09-words_analogies_implementation_1.mkv [f90e55cad933e095] 66,182,772 A09C3E06
15.10-word_analogies_implementation_2.mkv [97e966af85239f06] 78,050,180 AF6AD227
15.11-word_visualizations.mkv [912c0af8fe5dec2e] 25,344,815 88961616
15.12-word_visualizations_implementation.mkv [8ee7ee3ce70130d1] 39,447,206 256876ED
15.13-word_visualizations_implementation_2.mkv [628b0ffc1cbcc52b] 67,975,286 8C21DE9F
16.01-static_and_dynamic_embeddings.mkv [12eb0691d36aad25] 58,463,939 DFA407B0
16.02-self_supervision.mkv [ad68fb7a0789b2eb] 50,341,291 8BDB1E79
16.03-word2vec_algorithm_abstract.mkv [a2b102286fd6a4ba] 55,176,661 F42559CB
16.04-word2vec_why_negative_sampling.mkv [a3e80fa096895f05] 34,620,772 9E6D574C
16.05-word2vec_what_is_skip_gram.mkv [c01b7af78c9e551d] 47,476,556 D00C166B
16.06-word2vec_how_to_define_probability_law.mkv [efda2ea50fed17ad] 41,703,624 95944568
16.07-word2vec_sigmoid.mkv [5028a083ed1f7c3b] 49,424,142 E290B6F0
16.08-word2vec_formalizing_loss_function.mkv [22c49e1fcd8d46d8] 48,742,800 B0E862AF
16.09-word2vec_loss_function.mkv [25d82dd14d25c6cf] 35,978,001 0A25E5A3
16.10-word2vec_gradient_descent_step.mkv [d6ab0771728f0fbf] 37,590,335 01DBEDB7
16.11-word2vec_implementation_preparing_data.mkv [6ce8d57aa629b0f3] 91,382,157 D873F172
16.12-word2vec_implementation_gradient_step.mkv [9bfd999c326e0d37] 66,242,869 CE54B359
16.13-word2vec_implementation_driver_function.mkv [88acc15577834b44] 157,030,587 AB43F736
17.01-why_rnns_for_nlp.mkv [9e7e334d44787cd] 108,067,168 E65B34AB
17.02-pytorch_installation_and_tensors_introduction.mkv [564f62518631f715] 116,595,434 9E152BD4
17.03-automatic_differentiation_pytorch.mkv [302962b9c8ca5094] 67,938,359 AD650346
18.01-why_dnns_in_machine_learning.mkv [b153a847ca45ff7b] 48,156,635 A3B24DAD
18.02-representational_power_and_data_utilization_capacity_of_dnn.mkv [490158e4c4e0986c] 81,457,596 F5E56D8C
18.03-perceptron.mkv [7f7f699ee53c53bf] 46,400,300 0FC0E834
18.04-perceptron_implementation.mkv [ecd0a9ba9f7a839f] 60,593,267 D9B9CFA7
18.05-dnn_architecture.mkv [7efb15fd27b0da66] 38,469,415 CA5B67F6
18.06-dnn_forwardstep_implementation.mkv [69994e0b86975d] 79,535,714 CE27D701
18.07-dnn_why_activation_function_is_required.mkv [40e82a5a44e7e503] 47,242,434 E9514EEB
18.08-dnn_properties_of_activation_function.mkv [f08b662041c8738e] 69,646,918 13EA9AD1
18.09-dnn_activation_functions_in_pytorch.mkv [76bd6b848016ca79] 37,630,734 FB269CF3
18.10-dnn_what_is_loss_function.mkv [6a496ee1006ad24b] 58,835,743 9E23C903
18.11-dnn_loss_function_in_pytorch.mkv [764dc5c634876e3c] 51,497,089 A40EDD27
19.01-dnn_gradient_descent.mkv [2ca116653196a2ea] 76,989,451 FCF77104
19.02-dnn_gradient_descent_implementation.mkv [d07eaca879c085f2] 58,374,376 E6742988
19.03-dnn_gradient_descent_stochastic_batch_minibatch.mkv [725b8e2ba2d406bf] 67,420,647 8AB5B4A9
19.04-dnn_gradient_descent_summary.mkv [5f7f1d98853b4723] 53,352,810 B1230E9A
19.05-dnn_implementation_gradient_step.mkv [e19a286468ed3e62] 43,244,318 EFAE5BB8
19.06-dnn_implementation_stochastic_gradient_descent.mkv [9529e4060df225d7] 169,423,381 291BA211
19.07-dnn_implementation_batch_gradient_descent.mkv [174721a6002ec5b0] 90,318,719 3DEE7607
19.08-dnn_implementation_minibatch_gradient_descent.mkv [92221da86094fb79] 147,815,179 9D933214
19.09-dnn_implementation_in_pytorch.mkv [46490080653b37c5] 155,569,020 44A4377E
20.01-dnn_weights_initializations.mkv [2915c2daa2122f2c] 57,909,777 BE8EBB8A
20.02-dnn_learning_rate.mkv [801938a4f711e0cd] 40,694,284 D43F4A9F
20.03-dnn_batch_normalization.mkv [a80e6c962dbac309] 19,439,693 E571C38F
20.04-dnn_batch_normalization_implementation.mkv [bce24f5160711beb] 33,352,899 04880DE7
20.05-dnn_optimizations.mkv [773ec54667dc3eba] 81,829,215 A6588E3D
20.06-dnn_dropout.mkv [ce16858434f52b6e] 34,631,302 93744478
20.07-dnn_dropout_in_pytorch.mkv [1de65fe92c8af313] 25,941,079 6F4BA411
20.08-dnn_early_stopping.mkv [9bc6907614567664] 28,873,512 541D1282
20.09-dnn_hyperparameters.mkv [7c5bcab9054d2e30] 34,925,821 04020098
20.10-dnn_pytorch_cifar10_example.mkv [88d64747d471d17b] 149,478,155 1606FDF6
21.01-what_is_rnn.mkv [d6a04bf015fc8ef4] 37,334,629 355C56A9
21.02-understanding_rnn_with_a_simple_example.mkv [7abcd6a342647a80] 84,669,150 084B57A3
21.03-rnn_applications_human_activity_recognition.mkv [11ab5d58bbe10d90] 23,558,443 671FC5CD
21.04-rnn_applications_image_captioning.mkv [591e9a8c8bef8e97] 42,228,325 C6692855
21.05-rnn_applications_machine_translation.mkv [3834d16247173a14] 27,079,680 39593C35
21.06-rnn_applications_speech_recognition_stock_price_prediction.mkv [3846ba43c79e4872] 51,305,011 5FE91345
21.07-rnn_models.mkv [60906e327897300d] 65,094,292 0321F0B7
22.01-language_modeling_next_word_prediction.mkv [3d21e0ab010137f1] 31,370,448 BE0C484A
22.02-language_modeling_next_word_prediction_vocabulary_index.mkv [e3f7d40fa0ab54f6] 37,205,884 527413C6
22.03-language_modeling_next_word_prediction_vocabulary_index_embeddings.mkv [58dda260c4115754] 30,400,885 756DB8D0
22.04-language_modeling_next_word_prediction_rnn_architecture.mkv [7c33d39027dbee27] 35,668,709 44A68E0A
22.05-language_modeling_next_word_prediction_python_1.mkv [9d10a97531573660] 61,353,956 DDC3485D
22.06-language_modeling_next_word_prediction_python_2.mkv [f30e46db7d560a22] 80,838,462 10869222
22.07-language_modeling_next_word_prediction_python_3.mkv [2e478ed360b58275] 85,116,214 D8B1C4A1
22.08-language_modeling_next_word_prediction_python_4.mkv [a2eae4b8f1a7ef0e] 53,357,129 F48C0A96
22.09-language_modeling_next_word_prediction_python_5.mkv [67e95e5f34320c30] 41,502,991 E5B76DD2
22.10-language_modeling_next_word_prediction_python_6.mkv [e2c522842e6849da] 152,898,542 8D27116F
23.01-vocabulary_implementation.mkv [897c559989d14766] 109,997,584 FF509EE7
23.02-vocabulary_implementation_helpers.mkv [6589d6afc9b6cbd3] 59,278,630 007840F9
23.03-vocabulary_implementation_from_file.mkv [c5ef78d45d83f94f] 69,177,219 0238F243
23.04-vectorizer.mkv [6bf045eb83ad3c32] 42,758,709 4111BCC6
23.05-rnn_setup.mkv [908210dc119b8802] 81,905,370 D0AA04B5
23.06-rnn_setup_1.mkv [b77ba055774ea1a7] 307,838,055 7962ABAD
24.01-rnn_in_pytorch_introduction.mkv [ddde48a3b68b4c31] 15,238,225 3BCF30F0
24.02-rnn_in_pytorch_embedding_layer.mkv [46037386709263b8] 67,254,228 BAE6DD87
24.03-rnn_in_pytorch_nn_rnn.mkv [1b1be4d2ab12f45f] 69,672,408 C05D5E9C
24.04-rnn_in_pytorch_output_shapes.mkv [949ff40a085a777d] 37,393,761 BDEE5ACF
24.05-rnn_in_pytorch_gated_units.mkv [aafce951d33ac7c4] 28,837,116 F12683D8
24.06-rnn_in_pytorch_gated_units_gru_lstm.mkv [9db5eb0beeeba539] 43,721,031 844630C2
24.07-rnn_in_pytorch_bidirectional_rnn.mkv [bb60b12794affdb0] 21,856,264 359B460A
24.08-rnn_in_pytorch_bidirectional_rnn_output_shapes.mkv [7eb1e27b45f23bf7] 47,877,147 AD34D42E
24.09-rnn_in_pytorch_bidirectional_rnn_output_shapes_separation.mkv [82df7b7e2d66c79f] 42,863,419 4A5CF0EF
24.10-rnn_in_pytorch_example.mkv [6b05b338b760c30c] 95,249,893 B5BA4E0C
25.01-rnn_encoder_decoder.mkv [ea95eb235e7c9f55] 25,384,972 D2B4DA76
25.02-rnn_attention.mkv [d4c67121eadd22b3] 27,537,573 251A5554
26.01-introduction_to_dataset_and_packages.mkv [2cb085e0caf13f] 51,690,463 E18E90FE
26.02-implementing_language_class.mkv [7f7112ec3fb405e2] 49,927,764 90BE7D92
26.03-testing_language_class_and_implementing_normalization.mkv [9edb38eedeca7e27] 90,153,591 D80AACBB
26.04-reading_datafile.mkv [6c2faf6a442aaf0f] 53,646,218 AAB1C5CA
26.05-reading_building_vocabulary.mkv [91527bd62c5a1c3c] 83,142,522 02B75E18
26.06-encoderrnn.mkv [9d71294da692eb77] 61,985,874 B7C0D812
26.07-decoderrnn.mkv [9daaf4dea7bba1b0] 70,336,861 D13AFBC0
26.08-decoderrnn_forward_step.mkv [7b8b2c356d1a09e6] 152,644,072 F1F7248E
26.09-decoderrnn_helper_functions.mkv [f4813e7534cdbeb1] 58,316,329 05DB16FF
26.10-training_module.mkv [217ebbe428b7c824] 172,546,074 DD936E8D
26.11-stochastic_gradient_descent.mkv [2a91a581e1e17a3b] 86,786,608 EA59393F
26.12-nmt_training.mkv [f0df03c6f01e513c] 80,575,466 6C81121B
26.13-nmt_evaluation.mkv [6a6a7583b453466] 156,361,296 8C0E1069
9781803249193_Code.zip 63,863,218 25365CF4

Total size: 14,461,941,765
Video files
Sample
packt.nlp-natural.language.processing.in.python.for.beginners-xqzt-sample.mkv 10,290,377 89C96088
RAR Recovery
Not Present
Labels UNKNOWN