Archived
files |
01.01-introduction_to_the_course.mkv
[97ec82a19778fcb9]
|
11,653,699 |
DE8B3A7B |
01.02-introduction_to_the_instructor.mkv
[b61569ac7f8fffc]
|
52,673,464 |
B590F1F6 |
01.03-introduction_to_the_co-instructor.mkv
[f31a8f1db09be21b]
|
8,415,422 |
05154EB0 |
01.04-course_introduction.mkv
[39010871b86ff12c]
|
129,661,061 |
97AD6DA9 |
02.01-what_is_regular_expression.mkv
[198fd2c8475ea4e8]
|
59,492,625 |
516AC1A8 |
02.02-why_regular_expression.mkv
[9b5e3255d23322f6]
|
62,189,063 |
9D97B7D3 |
02.03-eliza_chatbot.mkv
[e3471f506e2f7c76]
|
50,568,431 |
10C51F26 |
02.04-python_regular_expression_package.mkv
[de07b9574db2b3b0]
|
37,145,026 |
866BD9F0 |
03.01-metacharacters.mkv
[e400fd9da2cd3be]
|
20,183,899 |
7C0A3B5B |
03.02-metacharacters_bigbrackets_exercise.mkv
[9a7759c64f06e9dc]
|
41,035,254 |
F42CBB36 |
03.03-meta_characters_bigbrackets_exercise_solution.mkv
[29c454f494f8efd3]
|
33,293,251 |
784832BB |
03.04-metacharacters_bigbrackets_exercise_2.mkv
[21b9fe2189b4f2d9]
|
23,000,392 |
5435B63D |
03.05-metacharacters_bigbrackets_exercise_2-solution.mkv
[9938686ba43208b3]
|
39,847,597 |
FBF00D61 |
03.06-metacharacters_cap.mkv
[8ec98698c3f656d1]
|
24,261,921 |
6493CD6A |
03.07-metacharacters_cap_exercise_3.mkv
[6faf2817350c3141]
|
24,058,160 |
65389E57 |
03.08-metacharacters_cap_exercise_3-solution.mkv
[bd079a01a6421550]
|
55,319,529 |
FC7BE40C |
03.09-backslash.mkv
[b5677e2353185ad0]
|
42,587,518 |
C9C517CE |
03.10-backslash_continued.mkv
[27c949f460293fd0]
|
62,450,107 |
F49A6F8E |
03.11-backslash_continued-01.mkv
[77c9689039af186f]
|
32,819,912 |
5D2EC84C |
03.12-backslash_squared_brackets_exercise.mkv
[3f85c64c803dbaa1]
|
14,840,321 |
11FDC834 |
03.13-backslash_squared_brackets_exercise_solution.mkv
[4834729c9820d3ea]
|
34,041,113 |
359A2B06 |
03.14-backslash_squared_brackets_exercise-another_solution.mkv
[49cd96ac0b618f48]
|
46,553,452 |
EC7B11C8 |
03.15-backslash_exercise.mkv
[ff05a8f62b236e1a]
|
15,121,322 |
7B022454 |
03.16-backslash_exercise_solution_and_special_sequences_exercise.mkv
[9ebd7129b4f8f154]
|
47,228,772 |
849501F5 |
03.17-solution_and_special_sequences_exercise_solution.mkv
[f23ab2b049979c48]
|
56,497,424 |
4B31A5AE |
03.18-metacharacter_asterisk.mkv
[cc02e90db58d106f]
|
46,107,809 |
FE14FB6B |
03.19-metacharacter_asterisk_exercise.mkv
[e826ab5b97194c04]
|
70,684,724 |
3A76DE91 |
03.20-metacharacter_asterisk_exercise_solution.mkv
[60e28f28424cd114]
|
69,264,881 |
DFEB1A16 |
03.21-metacharacter_asterisk_homework.mkv
[2313585d7b33dac]
|
46,489,764 |
F5D383BB |
03.22-metacharacter_asterisk_greedy_matching.mkv
[7d9796fa822c5189]
|
77,949,843 |
08D1E0F1 |
03.23-metacharacter_plus_and_question_mark.mkv
[c53beeca9002c75b]
|
58,969,290 |
EFC6DB3C |
03.24-metacharacter_curly_brackets_exercise.mkv
[95daaa7c7c1f03e5]
|
34,887,256 |
D22ED033 |
03.25-metacharacter_curly_brackets_exercise_solution.mkv
[9cc4888a977ff7b7]
|
55,505,464 |
BBDC0C9D |
04.01-pattern_objects.mkv
[c59c10cee1eef5c8]
|
46,370,063 |
78EE6F08 |
04.02-pattern_objects_match_method_exercise.mkv
[65db6a898f7b7736]
|
25,429,755 |
9353A06F |
04.03-pattern_objects_match_method_exercise_solution.mkv
[9bb0e7bcbfb6507f]
|
63,361,496 |
D6D0CDAC |
04.04-pattern_objects_match_method_versus_search_method.mkv
[18b7a7dad90ddaa8]
|
57,870,613 |
1A3E0696 |
04.05-pattern_objects_finditer_method.mkv
[676ba3724cfc2c52]
|
39,223,305 |
ACA35BD0 |
04.06-pattern_objects_finditer_method_exercise_solution.mkv
[d28834959a161c67]
|
87,655,942 |
CEA00E37 |
05.01-metacharacters_logical_or.mkv
[db69be40d95e7cc3]
|
67,587,141 |
D3463433 |
05.02-metacharacters_beginning_and_end_patterns.mkv
[1b5f139b2c4405ca]
|
42,339,543 |
1E56451C |
05.03-metacharacters_parentheses.mkv
[3d45929ae8d17c65]
|
63,075,329 |
B81C5140 |
06.01-string_modification.mkv
[4a5586419c6f5daf]
|
33,205,414 |
59116E5A |
06.02-word_tokenizer_using_split_method.mkv
[a0fb10944b94b161]
|
37,677,018 |
3D7758F6 |
06.03-sub_method_exercise.mkv
[aaad02d49b57444d]
|
39,504,857 |
B9D100FE |
06.04-sub_method_exercise_solution.mkv
[c6ad81970ad2bac7]
|
41,776,516 |
81D33C48 |
07.01-what_is_a_word.mkv
[e6c021c49b2e08f1]
|
39,234,464 |
0BAB531C |
07.02-definition_of_word_is_task_dependent.mkv
[e916b39415a094fb]
|
48,773,108 |
72B619F7 |
07.03-vocabulary_and_corpus.mkv
[5eaf85c3bc542dec]
|
49,239,061 |
690D15A2 |
07.04-tokens.mkv
[52afab0776d6d79f]
|
25,778,334 |
56F30AFF |
07.05-tokenization_in_spacy.mkv
[ea62224152128130]
|
74,263,569 |
A2CE349F |
08.01-yelp_reviews_classification_mini_project_introduction.mkv
[aeec7cba48fd93d6]
|
109,174,936 |
0CDFA2C2 |
08.02-yelp_reviews_classification_mini_project_vocabulary_initialization.mkv
[ba21d7e07dc40449]
|
64,972,279 |
F602E8A7 |
08.03-yelp_reviews_classification_mini_project_adding_tokens_to_vocabulary.mkv
[462b287fe4a2d94e]
|
43,970,295 |
3479C693 |
08.04-yelp_reviews_classification_mini_project_look_up_functions_in_vocabulary.mkv
[fde828bc0ff97139]
|
59,408,077 |
E02B45A4 |
08.05-yelp_reviews_classification_mini_project_building_vocabulary_from_data.mkv
[580a22cecadc4a7d]
|
93,479,050 |
851FB402 |
08.06-yelp_reviews_classification_mini_project_one-hot_encoding.mkv
[4a29c4445a1d24c]
|
51,246,784 |
28C71E6D |
08.07-yelp_reviews_classification_mini_project_one-hot_encoding_implementation.mkv
[a0c0baa7a2a5c6b6]
|
95,170,593 |
D0590CCF |
08.08-yelp_reviews_classification_mini_project_encoding_documents.mkv
[9e0b48962ea006fb]
|
58,461,734 |
F901A9BE |
08.09-yelp_reviews_classification_mini_project_encoding_documents_implementation.mkv
[a578b712913f20e]
|
57,845,160 |
EE54975A |
08.10-yelp_reviews_classification_mini_project_train_test_splits.mkv
[9087802a53d06042]
|
36,773,022 |
5ED5392B |
08.11-yelp_reviews_classification_mini_project_feature_computation.mkv
[5e293f0fba0939d]
|
62,784,735 |
8B4CD3EC |
08.12-yelp_reviews_classification_mini_project_classification.mkv
[b5ba8a124174683d]
|
117,656,335 |
AB74AD44 |
09.01-tokenization_in_detial_introduction.mkv
[902f2fc7beba3ff4]
|
34,076,040 |
0C17D98F |
09.02-tokenization_is_hard.mkv
[da87e7a2f372954]
|
55,056,670 |
46BEA303 |
09.03-tokenization_byte_pair_encoding.mkv
[6f21af201211db00]
|
55,768,978 |
A71EB818 |
09.04-tokenization_byte_pair_encoding_example.mkv
[c5d446ee701711dd]
|
76,498,729 |
0FA58BAC |
09.05-tokenization_byte_pair_encoding_on_test_data.mkv
[63c5df6592e8fbac]
|
81,048,999 |
4B55F29F |
09.06-tokenization_byte_pair_encoding_implementation_get_pair_counts.mkv
[514ec91a75950484]
|
67,038,780 |
9427B790 |
09.07-tokenization_byte_pair_encoding_implementation_merge_in_corpus.mkv
[4907df11bae9819a]
|
69,522,064 |
9DC0DCC8 |
09.08-tokenization_byte_pair_encoding_implementation_bfe_training.mkv
[71e964fd16603f5f]
|
57,437,455 |
2F01B459 |
09.09-tokenization_byte_pair_encoding_implementation_bfe_encoding.mkv
[495e375322e0be92]
|
51,025,068 |
C80E003B |
09.10-tokenization_byte_pair_encoding_implementation_bfe_encoding_one_pair.mkv
[12145c310261d4e2]
|
90,477,825 |
DE0ECA8A |
09.11-tokenization_byte_pair_encoding_implementation_bfe_encoding_one_pair_1.mkv
[7dfafeb9d05b2be0]
|
94,233,840 |
60C57C6A |
10.01-word_normalization_case_folding.mkv
[49f8646ce0dbd790]
|
30,299,614 |
0C35F380 |
10.02-word_normalization_lemmatization.mkv
[d4f2ec02b2c75e35]
|
54,490,382 |
E39F0C36 |
10.03-word_normalization_stemming.mkv
[38c670bfeb6f1f24]
|
23,968,895 |
C02BC5C4 |
10.04-word_normalization_sentence_segmentation.mkv
[fa1d634694acaa6d]
|
62,623,853 |
2FA48F54 |
11.01-spelling_correction_minimum_edit_distance_introduction.mkv
[f1a988ac8ab4d612]
|
78,730,655 |
EF90BE1E |
11.02-spelling_correction_minimum_edit_distance_example.mkv
[725dbab419f84b0f]
|
86,708,631 |
4F097059 |
11.03-spelling_correction_minimum_edit_distance_table_filling.mkv
[6dd1148e6fa1068]
|
91,667,144 |
4421DB67 |
11.04-spelling_correction_minimum_edit_distance_dynamic_programming.mkv
[ab835088c0b7a71e]
|
62,987,325 |
5959FA61 |
11.05-spelling_correction_minimum_edit_distance_pseudocode.mkv
[33b518a7e99c1997]
|
40,050,732 |
23694E21 |
11.06-spelling_correction_minimum_edit_distance_implementation.mkv
[140b535a46a22c1a]
|
68,327,004 |
98EEEB39 |
11.07-spelling_correction_minimum_edit_distance_implementation_bug_fixing.mkv
[a367f0eda5a3303c]
|
32,004,302 |
F8271FFC |
11.08-spelling_correction_implementation.mkv
[b723c71f7c72a520]
|
68,169,983 |
78275490 |
12.01-what_is_a_language_model.mkv
[9dcfdd7469e508a]
|
48,363,683 |
477B9D53 |
12.02-language_model_formal_definition.mkv
[2f6af9c96c0939f3]
|
45,048,629 |
FBD0BC9C |
12.03-language_model_curse_of_dimensionality.mkv
[b8bd45f3b0a67058]
|
31,736,122 |
6544F3B9 |
12.04-language_model_markov_assumption_and_n-grams.mkv
[1e5f13654e2a24dd]
|
66,546,711 |
305A8830 |
12.05-language_model_implementation_setup.mkv
[d1e630b0f75e6dab]
|
39,061,627 |
113AF186 |
12.06-language_model_implementation_n-grams_function.mkv
[bccf50d46aa8c0d9]
|
81,527,389 |
B4EC29C8 |
12.07-language_model_implementation_update_counts_function.mkv
[8ceb51715089e234]
|
58,254,700 |
E5712F9C |
12.08-language_model_implementation_probability_model_function.mkv
[619eca341ee16135]
|
65,246,897 |
2ABD079B |
12.09-language_model_implementation_reading_corpus.mkv
[960e1579b287d1fb]
|
130,330,797 |
2EB0D486 |
12.10-language_model_implementation_sampling_text.mkv
[82ae1e1f2cb38e37]
|
205,783,536 |
554D79F3 |
13.01-one-hot_vectors.mkv
[9f6952ca6eb24bf5]
|
30,038,510 |
687077B6 |
13.02-one-hot_vectors_implementation.mkv
[23814dd0e52d945d]
|
47,814,171 |
3D12A1CE |
13.03-one-hot_vectors_limitations.mkv
[82d163d1329d0029]
|
36,412,803 |
8E03B739 |
13.04-one-hot_vectors_used_as_target_labeling.mkv
[af81e37c394092e]
|
29,995,717 |
573DB939 |
13.05-term_frequency_for_document_representations.mkv
[2ad46a94066aa3d3]
|
28,778,649 |
D827B197 |
13.06-term_frequency_for_document_representations_implementations.mkv
[bdcbb7f4fefb4194]
|
49,837,436 |
72D63437 |
13.07-term_frequency_for_word_representations.mkv
[3d540fa8d04fa128]
|
45,127,533 |
C791EFD5 |
13.08-tfidf_for_document_representations.mkv
[5ad9440153555aec]
|
42,951,424 |
9B05206B |
13.09-tfidf_for_document_representations_implementation_reading_corpus.mkv
[550097e5f28f1a0c]
|
44,407,615 |
E29E83CE |
13.10-tfidf_for_document_representations_implementation_computing_document_frequency.mkv
[ff5760405c17311e]
|
49,885,164 |
196D6EC0 |
13.11-tfidf_for_document_representations_implementation_computing_tfidf.mkv
[80969d5ed15ee9ae]
|
86,959,628 |
F7C3CC63 |
13.12-topic_modeling_with_tfidf_1.mkv
[c14f93e3fe42e7cf]
|
38,558,833 |
38E5F5B5 |
13.13-topic_modeling_with_tfidf_2.mkv
[fb81e6362c9b83ed]
|
42,970,655 |
7A90F555 |
13.14-topic_modeling_with_tfidf_3.mkv
[2ea9e69751d81c4d]
|
49,736,673 |
C0DF8ADF |
13.15-topic_modeling_with_tfidf_4.mkv
[c5f005ebd33c53cf]
|
50,771,152 |
FB0B3973 |
13.16-topic_modeling_with_gensim.mkv
[e1355705431cfa52]
|
189,278,785 |
2A532363 |
14.01-word_co-occurrence_matrix.mkv
[d8c8f52f69bf8c4]
|
53,981,205 |
1A1FC2D9 |
14.02-word_co-occurrence_matrix_versus_document-term_matrix.mkv
[1088bd1dacc3ea7f]
|
54,948,620 |
BF740105 |
14.03-word_co-occurrence_matrix_implementation_preparing_data.mkv
[73f1076fb139ba9b]
|
42,141,305 |
43D9A754 |
14.04-word_co-occurrence_matrix_implementation_preparing_data_2.mkv
[36e9b4b54268fb24]
|
38,836,440 |
8BCCDD58 |
14.05-word_co-occurrence_matrix_implementation_preparing_data_getting_vocabulary.mkv
[3cc1eba57e380d3a]
|
42,524,740 |
3FE9C63C |
14.06-word_co-occurrence_matrix_implementation_final_function.mkv
[f743b3662a03ed5f]
|
129,745,169 |
7AFC0FE1 |
14.07-word_co-occurrence_matrix_implementation_handling_memory_issues_on_large_corpora.mkv
[ec827bf83e37dfc]
|
128,538,400 |
FA95BEFB |
14.08-word_co-occurrence_matrix_sparsity.mkv
[59232d67c6f80939]
|
51,412,052 |
8200D3F4 |
14.09-word_co-occurrence_matrix_positive_point_wise_mutual_information_ppmi.mkv
[d1e2feba82b1b6e9]
|
72,260,250 |
2E505577 |
14.10-pca_for_dense_embeddings.mkv
[3281071ba7dbee]
|
42,066,038 |
E18856CD |
14.11-latent_semantic_analysis.mkv
[f57b9a3bd109b228]
|
34,526,261 |
F52B6B6E |
14.12-latent_semantic_analysis_implementation.mkv
[4e000f15f7aa26e0]
|
80,117,701 |
F3021706 |
15.01-cosine_similarity.mkv
[26ff80d948f17ac8]
|
59,001,199 |
1DB3547D |
15.02-cosine_similarity_getting_norms_of_vectors.mkv
[6920a7d214e4b0a8]
|
118,510,120 |
B39FBBC1 |
15.03-cosine_similarity_normalizing_vectors.mkv
[58dbc4a8f3037ea4]
|
71,332,790 |
ED5204A5 |
15.04-cosine_similarity_with_more_than_one_vector.mkv
[61d67fc03f4c30be]
|
115,655,100 |
97F1A089 |
15.05-cosine_similarity_getting_most_similar_words_in_the_vocabulary.mkv
[88638b38f838158f]
|
108,467,275 |
27E5950F |
15.06-cosine_similarity_getting_most_similar_words_in_the_vocabulary_fixing_bug.mkv
[285e0e9c8a1567de]
|
90,930,188 |
5F518770 |
15.07-cosine_similarity_word2vec_embeddings.mkv
[cd645319bfc5d985]
|
97,861,179 |
A87E9E0F |
15.08-word_analogies.mkv
[a56085187bf6e301]
|
43,716,485 |
ED81280D |
15.09-words_analogies_implementation_1.mkv
[f90e55cad933e095]
|
66,182,772 |
A09C3E06 |
15.10-word_analogies_implementation_2.mkv
[97e966af85239f06]
|
78,050,180 |
AF6AD227 |
15.11-word_visualizations.mkv
[912c0af8fe5dec2e]
|
25,344,815 |
88961616 |
15.12-word_visualizations_implementation.mkv
[8ee7ee3ce70130d1]
|
39,447,206 |
256876ED |
15.13-word_visualizations_implementation_2.mkv
[628b0ffc1cbcc52b]
|
67,975,286 |
8C21DE9F |
16.01-static_and_dynamic_embeddings.mkv
[12eb0691d36aad25]
|
58,463,939 |
DFA407B0 |
16.02-self_supervision.mkv
[ad68fb7a0789b2eb]
|
50,341,291 |
8BDB1E79 |
16.03-word2vec_algorithm_abstract.mkv
[a2b102286fd6a4ba]
|
55,176,661 |
F42559CB |
16.04-word2vec_why_negative_sampling.mkv
[a3e80fa096895f05]
|
34,620,772 |
9E6D574C |
16.05-word2vec_what_is_skip_gram.mkv
[c01b7af78c9e551d]
|
47,476,556 |
D00C166B |
16.06-word2vec_how_to_define_probability_law.mkv
[efda2ea50fed17ad]
|
41,703,624 |
95944568 |
16.07-word2vec_sigmoid.mkv
[5028a083ed1f7c3b]
|
49,424,142 |
E290B6F0 |
16.08-word2vec_formalizing_loss_function.mkv
[22c49e1fcd8d46d8]
|
48,742,800 |
B0E862AF |
16.09-word2vec_loss_function.mkv
[25d82dd14d25c6cf]
|
35,978,001 |
0A25E5A3 |
16.10-word2vec_gradient_descent_step.mkv
[d6ab0771728f0fbf]
|
37,590,335 |
01DBEDB7 |
16.11-word2vec_implementation_preparing_data.mkv
[6ce8d57aa629b0f3]
|
91,382,157 |
D873F172 |
16.12-word2vec_implementation_gradient_step.mkv
[9bfd999c326e0d37]
|
66,242,869 |
CE54B359 |
16.13-word2vec_implementation_driver_function.mkv
[88acc15577834b44]
|
157,030,587 |
AB43F736 |
17.01-why_rnns_for_nlp.mkv
[9e7e334d44787cd]
|
108,067,168 |
E65B34AB |
17.02-pytorch_installation_and_tensors_introduction.mkv
[564f62518631f715]
|
116,595,434 |
9E152BD4 |
17.03-automatic_differentiation_pytorch.mkv
[302962b9c8ca5094]
|
67,938,359 |
AD650346 |
18.01-why_dnns_in_machine_learning.mkv
[b153a847ca45ff7b]
|
48,156,635 |
A3B24DAD |
18.02-representational_power_and_data_utilization_capacity_of_dnn.mkv
[490158e4c4e0986c]
|
81,457,596 |
F5E56D8C |
18.03-perceptron.mkv
[7f7f699ee53c53bf]
|
46,400,300 |
0FC0E834 |
18.04-perceptron_implementation.mkv
[ecd0a9ba9f7a839f]
|
60,593,267 |
D9B9CFA7 |
18.05-dnn_architecture.mkv
[7efb15fd27b0da66]
|
38,469,415 |
CA5B67F6 |
18.06-dnn_forwardstep_implementation.mkv
[69994e0b86975d]
|
79,535,714 |
CE27D701 |
18.07-dnn_why_activation_function_is_required.mkv
[40e82a5a44e7e503]
|
47,242,434 |
E9514EEB |
18.08-dnn_properties_of_activation_function.mkv
[f08b662041c8738e]
|
69,646,918 |
13EA9AD1 |
18.09-dnn_activation_functions_in_pytorch.mkv
[76bd6b848016ca79]
|
37,630,734 |
FB269CF3 |
18.10-dnn_what_is_loss_function.mkv
[6a496ee1006ad24b]
|
58,835,743 |
9E23C903 |
18.11-dnn_loss_function_in_pytorch.mkv
[764dc5c634876e3c]
|
51,497,089 |
A40EDD27 |
19.01-dnn_gradient_descent.mkv
[2ca116653196a2ea]
|
76,989,451 |
FCF77104 |
19.02-dnn_gradient_descent_implementation.mkv
[d07eaca879c085f2]
|
58,374,376 |
E6742988 |
19.03-dnn_gradient_descent_stochastic_batch_minibatch.mkv
[725b8e2ba2d406bf]
|
67,420,647 |
8AB5B4A9 |
19.04-dnn_gradient_descent_summary.mkv
[5f7f1d98853b4723]
|
53,352,810 |
B1230E9A |
19.05-dnn_implementation_gradient_step.mkv
[e19a286468ed3e62]
|
43,244,318 |
EFAE5BB8 |
19.06-dnn_implementation_stochastic_gradient_descent.mkv
[9529e4060df225d7]
|
169,423,381 |
291BA211 |
19.07-dnn_implementation_batch_gradient_descent.mkv
[174721a6002ec5b0]
|
90,318,719 |
3DEE7607 |
19.08-dnn_implementation_minibatch_gradient_descent.mkv
[92221da86094fb79]
|
147,815,179 |
9D933214 |
19.09-dnn_implementation_in_pytorch.mkv
[46490080653b37c5]
|
155,569,020 |
44A4377E |
20.01-dnn_weights_initializations.mkv
[2915c2daa2122f2c]
|
57,909,777 |
BE8EBB8A |
20.02-dnn_learning_rate.mkv
[801938a4f711e0cd]
|
40,694,284 |
D43F4A9F |
20.03-dnn_batch_normalization.mkv
[a80e6c962dbac309]
|
19,439,693 |
E571C38F |
20.04-dnn_batch_normalization_implementation.mkv
[bce24f5160711beb]
|
33,352,899 |
04880DE7 |
20.05-dnn_optimizations.mkv
[773ec54667dc3eba]
|
81,829,215 |
A6588E3D |
20.06-dnn_dropout.mkv
[ce16858434f52b6e]
|
34,631,302 |
93744478 |
20.07-dnn_dropout_in_pytorch.mkv
[1de65fe92c8af313]
|
25,941,079 |
6F4BA411 |
20.08-dnn_early_stopping.mkv
[9bc6907614567664]
|
28,873,512 |
541D1282 |
20.09-dnn_hyperparameters.mkv
[7c5bcab9054d2e30]
|
34,925,821 |
04020098 |
20.10-dnn_pytorch_cifar10_example.mkv
[88d64747d471d17b]
|
149,478,155 |
1606FDF6 |
21.01-what_is_rnn.mkv
[d6a04bf015fc8ef4]
|
37,334,629 |
355C56A9 |
21.02-understanding_rnn_with_a_simple_example.mkv
[7abcd6a342647a80]
|
84,669,150 |
084B57A3 |
21.03-rnn_applications_human_activity_recognition.mkv
[11ab5d58bbe10d90]
|
23,558,443 |
671FC5CD |
21.04-rnn_applications_image_captioning.mkv
[591e9a8c8bef8e97]
|
42,228,325 |
C6692855 |
21.05-rnn_applications_machine_translation.mkv
[3834d16247173a14]
|
27,079,680 |
39593C35 |
21.06-rnn_applications_speech_recognition_stock_price_prediction.mkv
[3846ba43c79e4872]
|
51,305,011 |
5FE91345 |
21.07-rnn_models.mkv
[60906e327897300d]
|
65,094,292 |
0321F0B7 |
22.01-language_modeling_next_word_prediction.mkv
[3d21e0ab010137f1]
|
31,370,448 |
BE0C484A |
22.02-language_modeling_next_word_prediction_vocabulary_index.mkv
[e3f7d40fa0ab54f6]
|
37,205,884 |
527413C6 |
22.03-language_modeling_next_word_prediction_vocabulary_index_embeddings.mkv
[58dda260c4115754]
|
30,400,885 |
756DB8D0 |
22.04-language_modeling_next_word_prediction_rnn_architecture.mkv
[7c33d39027dbee27]
|
35,668,709 |
44A68E0A |
22.05-language_modeling_next_word_prediction_python_1.mkv
[9d10a97531573660]
|
61,353,956 |
DDC3485D |
22.06-language_modeling_next_word_prediction_python_2.mkv
[f30e46db7d560a22]
|
80,838,462 |
10869222 |
22.07-language_modeling_next_word_prediction_python_3.mkv
[2e478ed360b58275]
|
85,116,214 |
D8B1C4A1 |
22.08-language_modeling_next_word_prediction_python_4.mkv
[a2eae4b8f1a7ef0e]
|
53,357,129 |
F48C0A96 |
22.09-language_modeling_next_word_prediction_python_5.mkv
[67e95e5f34320c30]
|
41,502,991 |
E5B76DD2 |
22.10-language_modeling_next_word_prediction_python_6.mkv
[e2c522842e6849da]
|
152,898,542 |
8D27116F |
23.01-vocabulary_implementation.mkv
[897c559989d14766]
|
109,997,584 |
FF509EE7 |
23.02-vocabulary_implementation_helpers.mkv
[6589d6afc9b6cbd3]
|
59,278,630 |
007840F9 |
23.03-vocabulary_implementation_from_file.mkv
[c5ef78d45d83f94f]
|
69,177,219 |
0238F243 |
23.04-vectorizer.mkv
[6bf045eb83ad3c32]
|
42,758,709 |
4111BCC6 |
23.05-rnn_setup.mkv
[908210dc119b8802]
|
81,905,370 |
D0AA04B5 |
23.06-rnn_setup_1.mkv
[b77ba055774ea1a7]
|
307,838,055 |
7962ABAD |
24.01-rnn_in_pytorch_introduction.mkv
[ddde48a3b68b4c31]
|
15,238,225 |
3BCF30F0 |
24.02-rnn_in_pytorch_embedding_layer.mkv
[46037386709263b8]
|
67,254,228 |
BAE6DD87 |
24.03-rnn_in_pytorch_nn_rnn.mkv
[1b1be4d2ab12f45f]
|
69,672,408 |
C05D5E9C |
24.04-rnn_in_pytorch_output_shapes.mkv
[949ff40a085a777d]
|
37,393,761 |
BDEE5ACF |
24.05-rnn_in_pytorch_gated_units.mkv
[aafce951d33ac7c4]
|
28,837,116 |
F12683D8 |
24.06-rnn_in_pytorch_gated_units_gru_lstm.mkv
[9db5eb0beeeba539]
|
43,721,031 |
844630C2 |
24.07-rnn_in_pytorch_bidirectional_rnn.mkv
[bb60b12794affdb0]
|
21,856,264 |
359B460A |
24.08-rnn_in_pytorch_bidirectional_rnn_output_shapes.mkv
[7eb1e27b45f23bf7]
|
47,877,147 |
AD34D42E |
24.09-rnn_in_pytorch_bidirectional_rnn_output_shapes_separation.mkv
[82df7b7e2d66c79f]
|
42,863,419 |
4A5CF0EF |
24.10-rnn_in_pytorch_example.mkv
[6b05b338b760c30c]
|
95,249,893 |
B5BA4E0C |
25.01-rnn_encoder_decoder.mkv
[ea95eb235e7c9f55]
|
25,384,972 |
D2B4DA76 |
25.02-rnn_attention.mkv
[d4c67121eadd22b3]
|
27,537,573 |
251A5554 |
26.01-introduction_to_dataset_and_packages.mkv
[2cb085e0caf13f]
|
51,690,463 |
E18E90FE |
26.02-implementing_language_class.mkv
[7f7112ec3fb405e2]
|
49,927,764 |
90BE7D92 |
26.03-testing_language_class_and_implementing_normalization.mkv
[9edb38eedeca7e27]
|
90,153,591 |
D80AACBB |
26.04-reading_datafile.mkv
[6c2faf6a442aaf0f]
|
53,646,218 |
AAB1C5CA |
26.05-reading_building_vocabulary.mkv
[91527bd62c5a1c3c]
|
83,142,522 |
02B75E18 |
26.06-encoderrnn.mkv
[9d71294da692eb77]
|
61,985,874 |
B7C0D812 |
26.07-decoderrnn.mkv
[9daaf4dea7bba1b0]
|
70,336,861 |
D13AFBC0 |
26.08-decoderrnn_forward_step.mkv
[7b8b2c356d1a09e6]
|
152,644,072 |
F1F7248E |
26.09-decoderrnn_helper_functions.mkv
[f4813e7534cdbeb1]
|
58,316,329 |
05DB16FF |
26.10-training_module.mkv
[217ebbe428b7c824]
|
172,546,074 |
DD936E8D |
26.11-stochastic_gradient_descent.mkv
[2a91a581e1e17a3b]
|
86,786,608 |
EA59393F |
26.12-nmt_training.mkv
[f0df03c6f01e513c]
|
80,575,466 |
6C81121B |
26.13-nmt_evaluation.mkv
[6a6a7583b453466]
|
156,361,296 |
8C0E1069 |
9781803249193_Code.zip |
63,863,218 |
25365CF4 |
|
Total size: |
14,461,941,765 |
|
|