RAR-files |
rebar-building.regression.models.with.scikit.learn.rar |
15,000,000 |
FB4139CB |
rebar-building.regression.models.with.scikit.learn.r00 |
15,000,000 |
ECFBAC7F |
rebar-building.regression.models.with.scikit.learn.r01 |
15,000,000 |
1A61A357 |
rebar-building.regression.models.with.scikit.learn.r02 |
15,000,000 |
5D0E7320 |
rebar-building.regression.models.with.scikit.learn.r03 |
15,000,000 |
2110A0C5 |
rebar-building.regression.models.with.scikit.learn.r04 |
15,000,000 |
97F7A0CF |
rebar-building.regression.models.with.scikit.learn.r05 |
15,000,000 |
C21C93EE |
rebar-building.regression.models.with.scikit.learn.r06 |
15,000,000 |
380124B6 |
rebar-building.regression.models.with.scikit.learn.r07 |
15,000,000 |
86015AC3 |
rebar-building.regression.models.with.scikit.learn.r08 |
15,000,000 |
5FAF9A0E |
rebar-building.regression.models.with.scikit.learn.r09 |
15,000,000 |
86E66673 |
rebar-building.regression.models.with.scikit.learn.r10 |
15,000,000 |
0D9E6114 |
rebar-building.regression.models.with.scikit.learn.r11 |
15,000,000 |
1BEC9CD0 |
rebar-building.regression.models.with.scikit.learn.r12 |
15,000,000 |
A18A4ED8 |
rebar-building.regression.models.with.scikit.learn.r13 |
15,000,000 |
B496A645 |
rebar-building.regression.models.with.scikit.learn.r14 |
15,000,000 |
78D8EA3F |
rebar-building.regression.models.with.scikit.learn.r15 |
15,000,000 |
088588BB |
rebar-building.regression.models.with.scikit.learn.r16 |
15,000,000 |
C30E28BD |
rebar-building.regression.models.with.scikit.learn.r17 |
15,000,000 |
55A2F170 |
rebar-building.regression.models.with.scikit.learn.r18 |
15,000,000 |
9B507F62 |
rebar-building.regression.models.with.scikit.learn.r19 |
12,173,295 |
304EA189 |
|
Total size: |
312,173,295 |
|
|
Archived
files |
01 - Course Overview\01 - Course Overview.mp4
[51ec4b00bafa9556]
|
3,805,516 |
FEA69894 |
02 - Understanding Linear Regression as a Machine Learning Problem\02 - Module Overview.mp4
[110aca4b15e3488f]
|
1,879,492 |
CA0ADAA4 |
02 - Understanding Linear Regression as a Machine Learning Problem\03 - Prerequisites and Course Outline.mp4
[8128352ec358bee2]
|
2,072,318 |
E0FD2F70 |
02 - Understanding Linear Regression as a Machine Learning Problem\04 - Module Summary.mp4
[7db9f705baa41af4]
|
1,688,172 |
C56B8380 |
02 - Understanding Linear Regression as a Machine Learning Problem\05 - Connecting the Dots with Linear Regression.mp4
[25486b791c90974d]
|
10,582,745 |
E6B7D4E0 |
02 - Understanding Linear Regression as a Machine Learning Problem\06 - Minimizing Least Square Error.mp4
[5851b3f8a08c5d79]
|
6,519,951 |
421FB637 |
02 - Understanding Linear Regression as a Machine Learning Problem\07 - Installing and Setting up scikit-learn.mp4
[410e8b200194704a]
|
4,862,968 |
450387B4 |
02 - Understanding Linear Regression as a Machine Learning Problem\08 - Exploring the Automobile Mpg Dataset.mp4
[60f8d060413c073a]
|
15,213,091 |
5383713F |
02 - Understanding Linear Regression as a Machine Learning Problem\09 - Visualizing Relationships and Correlations in Features.mp4
[8110fa6a5f3022b0]
|
11,738,530 |
FE921BD8 |
02 - Understanding Linear Regression as a Machine Learning Problem\10 - Mitigating Risks in Simple and Multiple Regression.mp4
[4dcc164fc31526d4]
|
9,127,735 |
B768AF3C |
02 - Understanding Linear Regression as a Machine Learning Problem\11 - R-squared and Adjusted R-squared.mp4
[c24505c37ed45fc9]
|
2,318,839 |
968510D3 |
02 - Understanding Linear Regression as a Machine Learning Problem\12 - Regression with Categorical Variables.mp4
[23a6d2a213d8aa4e]
|
5,986,280 |
EB8892DD |
03 - Building a Simple Linear Model\13 - Module Overview.mp4
[e0bdaa5e8212d4d9]
|
1,580,592 |
C86BA555 |
03 - Building a Simple Linear Model\14 - Simple Linear Regression .mp4
[d15a92a5229b6418]
|
17,006,357 |
32015BBA |
03 - Building a Simple Linear Model\15 - Linear Regression with Multiple Features.mp4
[3eea8434064c84e8]
|
13,775,179 |
2D532431 |
03 - Building a Simple Linear Model\16 - Standardizing Numeric Data.mp4
[654bd60c65f69a2d]
|
10,504,129 |
6EED58FE |
03 - Building a Simple Linear Model\17 - Label Encoding and One-hot Encoding Categorical Data.mp4
[f1f7e00297e8fff6]
|
11,486,831 |
DCD7A517 |
03 - Building a Simple Linear Model\18 - Linear Regression and the Dummy Trap.mp4
[ad2a8df7e5b500aa]
|
12,722,768 |
398F5A17 |
03 - Building a Simple Linear Model\19 - Module Summary.mp4
[5594821a5f51fec8]
|
1,595,529 |
EAB18774 |
04 - Building Regularized Regression Models\20 - Module Overview.mp4
[6f74658fc0354e1c]
|
1,666,115 |
2A6AF5B9 |
04 - Building Regularized Regression Models\21 - Overview of Regression Models in scikit-learn.mp4
[541be9a862b3c084]
|
3,501,307 |
7BAC7BD9 |
04 - Building Regularized Regression Models\22 - Overfitting and Regularization.mp4
[d198c52bcccc66e8]
|
6,428,582 |
E7071611 |
04 - Building Regularized Regression Models\23 - Lasso, Ridge and Elastic Net Regression.mp4
[2ce9cbe73d9af4b0]
|
7,792,957 |
F0BE9AE1 |
04 - Building Regularized Regression Models\24 - Defining Helper Functions to Build and Train Models and Compare Results.mp4
[69d9063f02950e29]
|
11,682,773 |
87A5C463 |
04 - Building Regularized Regression Models\25 - Single Feature, Kitchen Sink, and Parsimonious Linear Regression.mp4
[264e8a0866841597]
|
7,189,703 |
7F1736ED |
04 - Building Regularized Regression Models\26 - Lasso Regression.mp4
[a391f415c3da3bf8]
|
6,744,210 |
3E0ED858 |
04 - Building Regularized Regression Models\27 - Ridge Regression.mp4
[607ea68cd0773185]
|
4,313,476 |
5D2E77BE |
04 - Building Regularized Regression Models\28 - Elastic Net Regression.mp4
[e11aae964bf9f75e]
|
14,529,249 |
8D0A99B5 |
04 - Building Regularized Regression Models\29 - Module Summary.mp4
[e050c8bd72897894]
|
1,907,071 |
70EF2DAE |
05 - Performing Regression Using Multiple Techniques\30 - Module Overview.mp4
[52495b696f65676d]
|
2,057,470 |
702F3EE4 |
05 - Performing Regression Using Multiple Techniques\31 - Choosing Regression Algorithms.mp4
[8d8c95944070e057]
|
4,353,651 |
6255F87B |
05 - Performing Regression Using Multiple Techniques\32 - Least Angle Regression.mp4
[2ca0190a1ac2b58]
|
5,485,130 |
DA7F56AB |
05 - Performing Regression Using Multiple Techniques\33 - Implementing Least Angle Regression.mp4
[e1aa39809cc1da02]
|
2,503,734 |
8A14648D |
05 - Performing Regression Using Multiple Techniques\34 - Regression with Polynomial Relationships.mp4
[8419e813d5f9d095]
|
2,625,989 |
F5B85274 |
05 - Performing Regression Using Multiple Techniques\35 - Module Summary.mp4
[15b172d890f33a08]
|
2,178,786 |
7162DFA4 |
05 - Performing Regression Using Multiple Techniques\36 - Support Vector Regression.mp4
[90ccfee3127f558]
|
9,055,245 |
ADA27608 |
05 - Performing Regression Using Multiple Techniques\37 - Implementing Support Vector Regression.mp4
[3e0e452b32c8b3be]
|
6,357,293 |
F455A731 |
05 - Performing Regression Using Multiple Techniques\38 - Nearest Neighbors Regression.mp4
[57801aa7b9c4a332]
|
6,672,036 |
B6A7AA43 |
05 - Performing Regression Using Multiple Techniques\39 - Implementing K-nearest-neighbors Regression.mp4
[3b6de99e86db9e65]
|
4,637,187 |
AE70D320 |
05 - Performing Regression Using Multiple Techniques\40 - Stochastic Gradient Descent Regression.mp4
[98b2bb3ff158ddc1]
|
4,526,013 |
43739099 |
05 - Performing Regression Using Multiple Techniques\41 - Implementing Stochastic Gradient Descent Regression.mp4
[4ab34f46e6675152]
|
4,727,856 |
D3EC7BB7 |
05 - Performing Regression Using Multiple Techniques\42 - Decision Tree Regression.mp4
[88f8d423af3367b3]
|
6,660,477 |
3524142E |
05 - Performing Regression Using Multiple Techniques\43 - Implementing Decision Tree Regression.mp4
[fa13308e59a73874]
|
3,252,737 |
61F5C257 |
06 - Hyperparameter Tuning for Regression Models\44 - Module Overview.mp4
[b1c716eed1c10f29]
|
1,560,454 |
F3C5B5F4 |
06 - Hyperparameter Tuning for Regression Models\45 - Hyperparameter Tuning.mp4
[81306a8aff348af]
|
5,525,579 |
DC4CBBE2 |
06 - Hyperparameter Tuning for Regression Models\46 - Hyperparameter Tuning for Lasso Regression Using Grid Search.mp4
[d798ee37a7ee33c3]
|
12,142,001 |
259AE545 |
06 - Hyperparameter Tuning for Regression Models\47 - Tuning Different Regression Models Using Grid Search.mp4
[ea8dbb2a36dd1f96]
|
10,057,866 |
8F582670 |
06 - Hyperparameter Tuning for Regression Models\48 - Summary and Further Study.mp4
[e077602c9f50085e]
|
1,514,214 |
7F059CB0 |
building-regression-models-scikit-learn.zip |
6,047,051 |
8272342E |
01 - Course Overview |
0 |
00000000 |
02 - Understanding Linear Regression as a Machine Learning Problem |
0 |
00000000 |
03 - Building a Simple Linear Model |
0 |
00000000 |
04 - Building Regularized Regression Models |
0 |
00000000 |
05 - Performing Regression Using Multiple Techniques |
0 |
00000000 |
06 - Hyperparameter Tuning for Regression Models |
0 |
00000000 |
|
Total size: |
312,163,234 |
|
|