RAR-files |
rebar-evaluating.model.effectiveness.in.microsoft.azure.rar |
15,000,000 |
1ED43148 |
rebar-evaluating.model.effectiveness.in.microsoft.azure.r00 |
15,000,000 |
CA336251 |
rebar-evaluating.model.effectiveness.in.microsoft.azure.r01 |
15,000,000 |
90E7C605 |
rebar-evaluating.model.effectiveness.in.microsoft.azure.r02 |
15,000,000 |
209328E1 |
rebar-evaluating.model.effectiveness.in.microsoft.azure.r03 |
15,000,000 |
E51388A0 |
rebar-evaluating.model.effectiveness.in.microsoft.azure.r04 |
15,000,000 |
CA74AACB |
rebar-evaluating.model.effectiveness.in.microsoft.azure.r05 |
15,000,000 |
826B3DAA |
rebar-evaluating.model.effectiveness.in.microsoft.azure.r06 |
15,000,000 |
6EA46BCE |
rebar-evaluating.model.effectiveness.in.microsoft.azure.r07 |
3,044,338 |
5CF65E69 |
|
Total size: |
123,044,338 |
|
|
Archived
files |
01 - Course Overview\01 - Course Overview.mp4
[c903e2d184d279fe]
|
2,093,112 |
48503BD6 |
02 - Evaluating Model Effectiveness\02 - Overview.mp4
[a36bce37315ebbab]
|
2,156,120 |
EC77D541 |
02 - Evaluating Model Effectiveness\03 - Preliminary Terminology.mp4
[859db84c3c629022]
|
4,551,605 |
19630ABE |
02 - Evaluating Model Effectiveness\04 - Scoring and Evaluating an Azure ML Pipeline.mp4
[e36bb8e2e5b8c593]
|
6,630,313 |
DF061FE2 |
02 - Evaluating Model Effectiveness\05 - Demo - Inspecting an Azure ML Pipeline.mp4
[a203fe52c021712b]
|
19,209,017 |
E512D0B3 |
02 - Evaluating Model Effectiveness\06 - Demo - Scoring and Evaluating the Pipeline Model.mp4
[58d1b189e94ed471]
|
13,147,482 |
1539D963 |
02 - Evaluating Model Effectiveness\07 - Summary.mp4
[a16ba99dc46bfd72]
|
1,889,388 |
5769293D |
03 - Improving Model Performance\08 - Overview.mp4
[bdd869c198eaa594]
|
1,063,477 |
21F37786 |
03 - Improving Model Performance\09 - Detecting and Preventing Overfitting.mp4
[992930adf2ca67a3]
|
4,124,077 |
5FE6928D |
03 - Improving Model Performance\10 - Azure Automated Machine Learning.mp4
[a81568e0f2eee197]
|
2,351,381 |
439BCFC8 |
03 - Improving Model Performance\11 - Demo - Creating an Automated ML Experiment.mp4
[d9d02f7e1cf86737]
|
18,716,913 |
7A024F79 |
03 - Improving Model Performance\12 - Demo - Interpreting the Experiment Results.mp4
[b1c975d04971dd0d]
|
4,245,138 |
FE5FC7ED |
03 - Improving Model Performance\13 - Summary.mp4
[cf386b40a36ca3ee]
|
1,812,163 |
D727E9A0 |
04 - Assessing Model Explainability\14 - Overview.mp4
[e46395e4ca15f2e]
|
635,124 |
F0C2109A |
04 - Assessing Model Explainability\15 - Microsoft's Guiding Principles for Responsible AI.mp4
[80c922ae7243036f]
|
3,948,371 |
A2CB4D8F |
04 - Assessing Model Explainability\16 - Unintended Bias and Interpretability.mp4
[9fee71de1f721b10]
|
4,420,631 |
2253E9A8 |
04 - Assessing Model Explainability\17 - Setting Up an Experiment in a Jupyter Notebook.mp4
[c97e755c92bbd160]
|
12,857,946 |
A6FE6F9B |
04 - Assessing Model Explainability\18 - Demo - Touring the Azure Python Interpretability SDK.mp4
[c1401c283de28f2c]
|
16,561,555 |
4C001ED8 |
04 - Assessing Model Explainability\19 - Summary.mp4
[ea494fc21cca7331]
|
1,931,016 |
6B863F29 |
microsoft-azure-evaluating-model-effectiveness.zip |
695,838 |
0CE8BD70 |
01 - Course Overview |
0 |
00000000 |
02 - Evaluating Model Effectiveness |
0 |
00000000 |
03 - Improving Model Performance |
0 |
00000000 |
04 - Assessing Model Explainability |
0 |
00000000 |
|
Total size: |
123,040,667 |
|
|