• Anonymous
  • 2020-11-30 18:16:31
  • Unknown

RELEASE >

ReScene version pyReScene Auto 0.7 REBAR File size CRC
Download
19,338
Stored files
232 2E004C06
2,100 93E001BD
RAR-files
pluralsight.feature.engineering.jul2020-rebar.rar 50,000,000 2D8150F4
pluralsight.feature.engineering.jul2020-rebar.r00 50,000,000 925B27D1
pluralsight.feature.engineering.jul2020-rebar.r01 50,000,000 4927DF7F
pluralsight.feature.engineering.jul2020-rebar.r02 50,000,000 132CACDC
pluralsight.feature.engineering.jul2020-rebar.r03 50,000,000 37F3C408
pluralsight.feature.engineering.jul2020-rebar.r04 50,000,000 8E8346CB
pluralsight.feature.engineering.jul2020-rebar.r05 50,000,000 23599148
pluralsight.feature.engineering.jul2020-rebar.r06 50,000,000 03B967CF
pluralsight.feature.engineering.jul2020-rebar.r07 50,000,000 4F0E3A6D
pluralsight.feature.engineering.jul2020-rebar.r08 50,000,000 F5FE8670
pluralsight.feature.engineering.jul2020-rebar.r09 50,000,000 CC110721
pluralsight.feature.engineering.jul2020-rebar.r10 50,000,000 74AD40C6
pluralsight.feature.engineering.jul2020-rebar.r11 50,000,000 6AF796E4
pluralsight.feature.engineering.jul2020-rebar.r12 50,000,000 7E1E20F2
pluralsight.feature.engineering.jul2020-rebar.r13 50,000,000 55E75000
pluralsight.feature.engineering.jul2020-rebar.r14 50,000,000 DF6C01FA
pluralsight.feature.engineering.jul2020-rebar.r15 50,000,000 11F1A231
pluralsight.feature.engineering.jul2020-rebar.r16 50,000,000 05169624
pluralsight.feature.engineering.jul2020-rebar.r17 50,000,000 6D6E072B
pluralsight.feature.engineering.jul2020-rebar.r18 50,000,000 C3426A9D
pluralsight.feature.engineering.jul2020-rebar.r19 50,000,000 3C105DAC
pluralsight.feature.engineering.jul2020-rebar.r20 50,000,000 F086362B
pluralsight.feature.engineering.jul2020-rebar.r21 50,000,000 E970B69F
pluralsight.feature.engineering.jul2020-rebar.r22 50,000,000 E9FA2EE3
pluralsight.feature.engineering.jul2020-rebar.r23 50,000,000 63DA5E6A
pluralsight.feature.engineering.jul2020-rebar.r24 50,000,000 41530F1F
pluralsight.feature.engineering.jul2020-rebar.r25 50,000,000 D3E9D013
pluralsight.feature.engineering.jul2020-rebar.r26 50,000,000 972503A2
pluralsight.feature.engineering.jul2020-rebar.r27 50,000,000 2325255B
pluralsight.feature.engineering.jul2020-rebar.r28 50,000,000 3962B66D
pluralsight.feature.engineering.jul2020-rebar.r29 50,000,000 49C6CA30
pluralsight.feature.engineering.jul2020-rebar.r30 50,000,000 862CC717
pluralsight.feature.engineering.jul2020-rebar.r31 50,000,000 F45F35D1
pluralsight.feature.engineering.jul2020-rebar.r32 50,000,000 0091ED42
pluralsight.feature.engineering.jul2020-rebar.r33 6,942,160 6451C9C0

Total size: 1,706,942,160
Archived files
01 - Introduction\01 - Feature Engineering PDF.mp4 [a12d26a9774c6e63] 235,545 A75EF6B6
01 - Introduction\02 - Introduction.mp4 [43b1abb71aeda0df] 12,797,967 7E664590
02 - Raw data to features\03 - Raw Data to Features.mp4 [cf4142d0bcfe94a2] 30,807,761 947DA8F4
02 - Raw data to features\04 - Good vs Bad Features.mp4 [894de8b435aec0a7] 40,817,981 AD7F2847
02 - Raw data to features\05 - Quiz - Features are Related to the Objective.mp4 [72778e7c00490ddc] 39,149,867 1964E6AE
02 - Raw data to features\06 - Quiz - Features are knowable at prediction time.mp4 [f4f8348d698613d2] 18,728,007 B4B28138
02 - Raw data to features\07 - Features are knowable at prediction time'.mp4 [16768fc8a4480f28] 39,149,867 118DC499
02 - Raw data to features\08 - Features should be numeric.mp4 [ddb42c828aab6a2a] 1,728,277 56ACB5AC
02 - Raw data to features\09 - Quiz - Features should be numeric.mp4 [f6e1772f95655862] 36,292,783 2E12DFC9
02 - Raw data to features\10 - Features should have enough examples.mp4 [1312c78e4ddc935d] 19,772,658 FDCB7DE5
02 - Raw data to features\11 - Quiz - Features should have enough examples (part 1).mp4 [f9493aa8495e8b94] 21,625,795 7B3C9FF5
02 - Raw data to features\12 - Quiz - Features should have enough examples (part 2).mp4 [688e958bb3a4c729] 32,314,322 5355EB52
02 - Raw data to features\13 - Bringing human insights.mp4 [6c5b9d95c88a44a4] 3,989,529 8779261F
02 - Raw data to features\14 - Representing Features.mp4 [32594a7e2278e4c0] 24,364,604 0AA82CBC
02 - Raw data to features\15 - ML vs Statistics.mp4 [299b4f73958d98a8] 24,996,693 24199AD0
02 - Raw data to features\16 - Lab - Improving model accuracy with new features.mp4 [402652098971b8bd] 251,816 30B4FFFF
02 - Raw data to features\17 - Improve model accuracy with new features.mp4 [bb25e72ba88c5018] 92,233,338 6BE47D80
03 - Preprocessing and feature creation\18 - Preprocessing and feature creation.mp4 [a371e0c8341c508f] 23,636,292 762EA5AB
03 - Preprocessing and feature creation\19 - Apache Beam _ Cloud Dataflow.mp4 [90674ac086cd7ded] 30,198,767 07AD9D65
03 - Preprocessing and feature creation\20 - A Simple Dataflow Pipeline.mp4 [a2cf9e1ec95b2513] 2,301,962 B6B03E6E
03 - Preprocessing and feature creation\21 - Lab - A simple Dataflow pipeline (Python).mp4 [82518dc80f84185a] 246,039 A2D924BC
03 - Preprocessing and feature creation\22 - Lab Solution - A Simple Dataflow Pipeline.mp4 [533786d4fe159b51] 22,108,716 480447E1
03 - Preprocessing and feature creation\23 - Data Pipelines at Scale.mp4 [f9c1d3e308a15d4c] 15,393,029 D65C349F
03 - Preprocessing and feature creation\24 - MapReduce in Dataflow.mp4 [8bcc434f67eaad49] 4,022,438 AF86DA65
03 - Preprocessing and feature creation\25 - Lab - MapReduce in Dataflow (Python).mp4 [bbb0346e597622e9] 237,325 D0279279
03 - Preprocessing and feature creation\26 - Lab Solution - MapReduce in Dataflow.mp4 [7623fd5ccd86ef17] 10,858,937 15D21F75
03 - Preprocessing and feature creation\27 - Dataflow Wrapup.mp4 [4371a15d28a9af44] 1,001,925 AF076B53
03 - Preprocessing and feature creation\28 - Preprocessing with Cloud Dataprep.mp4 [f037a650424382df] 27,388,169 606815D4
03 - Preprocessing and feature creation\29 - Lab Intro - Computing Time-Windowed Features in Cloud Dataprep.mp4 [25d22eae79af28be] 36,675,803 6D7FF089
03 - Preprocessing and feature creation\30 - Lab - Computing Time-Windowed Features in Cloud Dataprep.mp4 [3d210fb63795fb50] 257,904 973913B1
03 - Preprocessing and feature creation\31 - Lab Solution - Computing Time-Windowed Features in Cloud Dataprep.mp4 [332ba9c37f6289ba] 4,209,529 78E3B35C
04 - Feature crosses\32 - Introduction.mp4 [623a3ed7177c3cec] 12,800,136 B01532E8
04 - Feature crosses\33 - What is a feature cross.mp4 [3dd6c719046e25b6] 49,273,352 11C7F1A8
04 - Feature crosses\34 - Discretization.mp4 [5a9bff1d889759c3] 19,591,949 9F1743FD
04 - Feature crosses\35 - Memorization vs. Generalization.mp4 [9bd3c00ee2c6cdd1] 58,539,083 C404F5A9
04 - Feature crosses\36 - Taxi colors.mp4 [2740baa3193b43e2] 52,163,154 E653A378
04 - Feature crosses\37 - Lab Intro - Feature Crosses to create a good classifier.mp4 [7e241db0117ceaca] 2,787,650 BF8D2A54
04 - Feature crosses\38 - Lab Solution - Feature Crosses to create a good classifier.mp4 [8f7638e0dd2a4c85] 41,293,749 CA12FDB9
04 - Feature crosses\39 - Sparsity + Quiz.mp4 [b1f4fe5c686d1abd] 50,749,017 46FEF50A
04 - Feature crosses\40 - Lab Intro - Too Much of a Good Thing.mp4 [a43a89134a14cd59] 7,207,594 5034FC89
04 - Feature crosses\41 - Lab Solution - Too Much of a Good Thing.mp4 [296540da0e6ebd14] 48,470,877 B50DA206
04 - Feature crosses\42 - Implementing Feature Crosses.mp4 [b62219a69e48a20f] 65,346,046 C5E83234
04 - Feature crosses\43 - Embedding Feature Crosses.mp4 [747f1a0ef1bd984] 103,130,918 EC00D63D
04 - Feature crosses\44 - Where to Do Feature Engineering.mp4 [4cebbc502a4d952] 38,403,316 696A4F2A
04 - Feature crosses\45 - Feature Creation in TensorFlow.mp4 [79e602edceec00b2] 6,069,347 E1E1127E
04 - Feature crosses\46 - Feature Creation in DataFlow.mp4 [23e5ef193814512e] 11,665,288 670B2F3B
04 - Feature crosses\47 - Lab Intro - Improve ML Model with Feature Engineering.mp4 [dea69c5dd5da7145] 5,084,390 DD122457
04 - Feature crosses\48 - Lab - Improve Machine Learning model with Feature Engineering.mp4 [f81a644a2ebd8b] 256,294 C2925AA1
04 - Feature crosses\49 - Debrief - ML Fairness.mp4 [d569f9834db184c3] 33,581,872 44577E34
04 - Feature crosses\50 - Solution - Improve ML Model with Feature Engineering.mp4 [d29613b3b6473385] 153,601,599 62D0B1D2
05 - TensorFlow Transform\51 - Introduction.mp4 [66646d7a96b9252f] 4,943,560 DA785583
05 - TensorFlow Transform\52 - TensorFlow Transform.mp4 [35a598c3f476b6f7] 71,792,370 977A28CE
05 - TensorFlow Transform\53 - Analyze phase.mp4 [4428ee4ac2d90b29] 10,133,303 CCE9FF14
05 - TensorFlow Transform\54 - Transform phase.mp4 [a0f8da607c3123a1] 20,047,564 5F72003C
05 - TensorFlow Transform\55 - Supporting serving.mp4 [a3599b96907534bc] 27,079,579 79C8B989
05 - TensorFlow Transform\56 - Exploring tf.transform.mp4 [35c6d7acaccb6335] 17,099,607 7D45B101
05 - TensorFlow Transform\57 - Lab - Exploring tf.transform.mp4 [b3a8c134f1b94fe1] 235,286 02C56C19
05 - TensorFlow Transform\58 - Exploring tf.transform.mp4 [5a1d596d720dcdc9] 151,540,089 1E9B878A
06 - Summary\59 - Summary.mp4 [c79cee72186d5a58] 26,250,558 3A6E3E81
01 - Introduction 0 00000000
02 - Raw data to features 0 00000000
03 - Preprocessing and feature creation 0 00000000
04 - Feature crosses 0 00000000
05 - TensorFlow Transform 0 00000000
06 - Summary 0 00000000

Total size: 1,706,931,192
RAR Recovery
Not Present
Labels UNKNOWN