RAR-files |
plim-qner-xqzt.rar |
50,000,000 |
7FF0E044 |
plim-qner-xqzt.r00 |
50,000,000 |
0871978D |
plim-qner-xqzt.r01 |
50,000,000 |
65CD65BB |
plim-qner-xqzt.r02 |
50,000,000 |
997C78D3 |
plim-qner-xqzt.r03 |
50,000,000 |
60D28F79 |
plim-qner-xqzt.r04 |
50,000,000 |
2D08B6F9 |
plim-qner-xqzt.r05 |
50,000,000 |
BCFC71B4 |
plim-qner-xqzt.r06 |
50,000,000 |
B5AAB3B9 |
plim-qner-xqzt.r07 |
50,000,000 |
E6DA5511 |
plim-qner-xqzt.r08 |
50,000,000 |
D0B7E62F |
plim-qner-xqzt.r09 |
50,000,000 |
3D616E75 |
plim-qner-xqzt.r10 |
50,000,000 |
D9903A08 |
plim-qner-xqzt.r11 |
50,000,000 |
321F236F |
plim-qner-xqzt.r12 |
50,000,000 |
C5B93176 |
plim-qner-xqzt.r13 |
50,000,000 |
D74CF559 |
plim-qner-xqzt.r14 |
50,000,000 |
B21A24A4 |
plim-qner-xqzt.r15 |
50,000,000 |
9403FDEA |
plim-qner-xqzt.r16 |
50,000,000 |
D368274C |
plim-qner-xqzt.r17 |
50,000,000 |
C68CFFC6 |
plim-qner-xqzt.r18 |
50,000,000 |
0FE6D78E |
plim-qner-xqzt.r19 |
50,000,000 |
CC48F53D |
plim-qner-xqzt.r20 |
50,000,000 |
C736E0A8 |
plim-qner-xqzt.r21 |
50,000,000 |
1136B84F |
plim-qner-xqzt.r22 |
50,000,000 |
44B66F6D |
plim-qner-xqzt.r23 |
50,000,000 |
D7179958 |
plim-qner-xqzt.r24 |
50,000,000 |
D1E352DF |
plim-qner-xqzt.r25 |
39,291,005 |
BCB2458B |
|
Total size: |
1,339,291,005 |
|
|
Archived
files |
1 - Introduction\02 - Getting Started with Google Cloud Platform and Qwiklabs.mp4
[815bbe3789d80101]
|
17,635,942 |
3219578C |
1 - Introduction\01 - Introduction.mp4
[b67c59a139997ce9]
|
47,678,719 |
A404E415 |
2 - Practical ML\08 - Short history of ML - Neural Networks.mp4
[c34a478218457ac]
|
50,196,324 |
2105E30B |
2 - Practical ML\09 - Short history of ML - Decision Trees.mp4
[385899b77fb98467]
|
22,141,388 |
C04D44D5 |
2 - Practical ML\05 - Regression and Classification.mp4
[f847e710719f8982]
|
74,080,234 |
E181ABE6 |
2 - Practical ML\03 - Introduction to Practical ML.mp4
[5edec1ed49bfdf92]
|
10,304,930 |
7E36E5CC |
2 - Practical ML\12 - Short history of ML - Modern Neural Networks.mp4
[e40c5bcc2bad2e0e]
|
61,608,950 |
ACCEDBED |
2 - Practical ML\04 - Supervised Learning.mp4
[775c4212c7378271]
|
35,834,416 |
6F3044C0 |
2 - Practical ML\11 - Short history of ML - Random Forests.mp4
[874cdc232f819b3c]
|
38,392,390 |
AF3DA955 |
2 - Practical ML\06 - Short history of ML - Linear Regression.mp4
[d86c153d40801e46]
|
39,531,603 |
CB9AEF6E |
2 - Practical ML\10 - Short history of ML - Kernel Methods.mp4
[a8a38e72579f9b93]
|
24,031,308 |
8DD04F05 |
2 - Practical ML\07 - Short history of ML - Perceptron.mp4
[3af4b49c9211db40]
|
41,001,205 |
780501AD |
4 - Generalization and Sampling\26 - Introduction to Generalization and Sampling.mp4
[ed9c56b8fe7710c7]
|
22,904,713 |
801CCE57 |
4 - Generalization and Sampling\35 - [ML on GCP C2] Exploring and Creating ML Datasets.mp4
[60fe06eb2945bbe0]
|
251,268 |
E90D5C11 |
4 - Generalization and Sampling\30 - Demo - Creating Repeatable Samples in BigQuery.mp4
[6496e23ef832b395]
|
66,263,644 |
80DB4045 |
4 - Generalization and Sampling\36 - Lab Solution - Exploring and Creating ML Datasets.mp4
[aca82d8c09adaa9a]
|
158,916,427 |
FDDAE53C |
4 - Generalization and Sampling\33 - Lab Solution - Creating Repeatable Dataset Splits.mp4
[155847e7e3861186]
|
61,880,059 |
A58257CC |
4 - Generalization and Sampling\31 - Lab Intro - Creating Repeatable Dataset Splits.mp4
[80e472a558d24ca2]
|
22,362,568 |
F06700F0 |
4 - Generalization and Sampling\28 - When to Stop Model Training.mp4
[2fd7fbe2c4a34cd0]
|
49,857,798 |
883157B1 |
4 - Generalization and Sampling\29 - Creating Repeatable Samples in BigQuery.mp4
[f35d8ad6e84157f5]
|
57,384,516 |
51068598 |
4 - Generalization and Sampling\34 - Lab Intro - Exploring and Creating ML Datasets.mp4
[fabbba4e4063a382]
|
35,896,451 |
59509C51 |
4 - Generalization and Sampling\27 - Generalization and ML Models.mp4
[5fd2b51aabe36517]
|
45,124,859 |
FA3B7726 |
4 - Generalization and Sampling\32 - [ML on GCP C2] Creating repeatable splits in BigQuery.mp4
[caf1494014016078]
|
252,312 |
978DBF2B |
3 - Optimization\13 - Introduction to Optimization.mp4
[7df1b2c704a6fe95]
|
5,267,794 |
C1956E37 |
3 - Optimization\21 - Activity - TensorFlow Playground - Advanced.mp4
[be3ba90e506c81cc]
|
40,827,793 |
CCC4DF84 |
3 - Optimization\23 - Activity - Loss Curve Troubleshooting.mp4
[29d0bba2fbbf3f4e]
|
18,408,439 |
12FC12F4 |
3 - Optimization\18 - Troubleshooting a Loss Curve.mp4
[4616008836d26012]
|
19,812,444 |
447A64C9 |
3 - Optimization\15 - Introducing the Course Dataset.mp4
[8e521ea43974f437]
|
51,131,810 |
18EB720A |
3 - Optimization\25 - Confusion Matrix.mp4
[4cec09eb263f7da7]
|
13,058,305 |
D6CAB219 |
3 - Optimization\16 - Introducing Loss Functions.mp4
[6d4be15ac69aa964]
|
22,443,277 |
CD20AD33 |
3 - Optimization\17 - Gradient Descent.mp4
[c9f0df19036ad19e]
|
28,395,815 |
05D1799C |
3 - Optimization\19 - ML Model Pitfalls.mp4
[9b497eadabce2d22]
|
44,064,100 |
5C330E5C |
3 - Optimization\20 - Activity - Introducing the TensorFlow Playground.mp4
[4aadee6687bf5790]
|
14,319,680 |
9313041E |
3 - Optimization\14 - Defining ML Models.mp4
[741f469a3aa0967f]
|
22,624,074 |
CC6C9C0C |
3 - Optimization\22 - Activity - Practicing with Neural Networks.mp4
[dbcc95b3ddd2ee47]
|
31,452,807 |
6B5AA01D |
3 - Optimization\24 - Performance Metrics.mp4
[de22f8e6a346470]
|
27,269,793 |
F7DEF2EC |
5 - Summary\37 - Summary.mp4
[9672dab255c20542]
|
13,949,262 |
A4E8957D |
launching-machine-learning.zip |
2,726,039 |
6F9B3F77 |
1 - Introduction |
0 |
00000000 |
2 - Practical ML |
0 |
00000000 |
4 - Generalization and Sampling |
0 |
00000000 |
3 - Optimization |
0 |
00000000 |
5 - Summary |
0 |
00000000 |
|
Total size: |
1,339,283,456 |
|
|