"Dont ask to ask, just ask" -- Skalman
  • Anonymous
  • 2020-05-24 23:15:23
  • Unknown

RELEASE >

ReScene version pyReScene Auto 0.7 REBAR File size CRC
Download
21,063
Stored files
234 E4690DE3
2,178 0612DF69
RAR-files
rebar-preparing.data.for.feature.engineering.and.machine.learning.in.microsoft.azure.rar 15,000,000 E4218D48
rebar-preparing.data.for.feature.engineering.and.machine.learning.in.microsoft.azure.r00 15,000,000 9F477F98
rebar-preparing.data.for.feature.engineering.and.machine.learning.in.microsoft.azure.r01 15,000,000 BAAE359F
rebar-preparing.data.for.feature.engineering.and.machine.learning.in.microsoft.azure.r02 15,000,000 DCCE0C66
rebar-preparing.data.for.feature.engineering.and.machine.learning.in.microsoft.azure.r03 15,000,000 D2D36B1D
rebar-preparing.data.for.feature.engineering.and.machine.learning.in.microsoft.azure.r04 15,000,000 54EF9FDF
rebar-preparing.data.for.feature.engineering.and.machine.learning.in.microsoft.azure.r05 15,000,000 B0AE9A03
rebar-preparing.data.for.feature.engineering.and.machine.learning.in.microsoft.azure.r06 15,000,000 7B1536AA
rebar-preparing.data.for.feature.engineering.and.machine.learning.in.microsoft.azure.r07 15,000,000 2CF41416
rebar-preparing.data.for.feature.engineering.and.machine.learning.in.microsoft.azure.r08 15,000,000 FBE9F657
rebar-preparing.data.for.feature.engineering.and.machine.learning.in.microsoft.azure.r09 15,000,000 AD85962E
rebar-preparing.data.for.feature.engineering.and.machine.learning.in.microsoft.azure.r10 15,000,000 849B2304
rebar-preparing.data.for.feature.engineering.and.machine.learning.in.microsoft.azure.r11 15,000,000 A8639A0B
rebar-preparing.data.for.feature.engineering.and.machine.learning.in.microsoft.azure.r12 15,000,000 09A67EDF
rebar-preparing.data.for.feature.engineering.and.machine.learning.in.microsoft.azure.r13 15,000,000 E92761E5
rebar-preparing.data.for.feature.engineering.and.machine.learning.in.microsoft.azure.r14 15,000,000 311D0EA0
rebar-preparing.data.for.feature.engineering.and.machine.learning.in.microsoft.azure.r15 15,000,000 9BEEF5A3
rebar-preparing.data.for.feature.engineering.and.machine.learning.in.microsoft.azure.r16 15,000,000 37DF6805
rebar-preparing.data.for.feature.engineering.and.machine.learning.in.microsoft.azure.r17 15,000,000 07DE0B59
rebar-preparing.data.for.feature.engineering.and.machine.learning.in.microsoft.azure.r18 15,000,000 08C9BC28
rebar-preparing.data.for.feature.engineering.and.machine.learning.in.microsoft.azure.r19 15,000,000 A9F8DB15
rebar-preparing.data.for.feature.engineering.and.machine.learning.in.microsoft.azure.r20 9,125,173 541BD977

Total size: 324,125,173
Archived files
01 - Course Overview\01 - Course Overview.mp4 [a31c84f3464009a7] 3,861,935 F0A694F2
02 - Getting Started with Azure Machine Learning\02 - Introduction.mp4 [7ab9c0626835e93a] 4,132,931 61EB3D68
02 - Getting Started with Azure Machine Learning\03 - What Is Machine Learning-.mp4 [16167ae5af2a58e1] 4,908,900 EA8F5003
02 - Getting Started with Azure Machine Learning\04 - Introduction to Azure Machine Learning.mp4 [9af0127e5e31488c] 3,534,023 7A88D313
02 - Getting Started with Azure Machine Learning\05 - Azure Machine Learning Experiment Workflow.mp4 [2e8bbe2c4fabd27e] 3,311,264 BC011C6E
02 - Getting Started with Azure Machine Learning\06 - Prerequisites.mp4 [b7fb55fe665c1025] 580,564 EE67D476
02 - Getting Started with Azure Machine Learning\07 - Demo- Creating an Azure Machine Learning Studio Workspace.mp4 [f983aeca324831f0] 11,899,644 934830FA
02 - Getting Started with Azure Machine Learning\08 - Demo- Creating an Azure Machine Learning Service Workspace.mp4 [4a386fc4f769c505] 7,573,292 03A3DFEF
02 - Getting Started with Azure Machine Learning\09 - Demo- Exploring the Dataset.mp4 [d34a668093a310ea] 9,698,869 5DB836C7
02 - Getting Started with Azure Machine Learning\10 - Summary.mp4 [5d6ba72a5fd34a96] 1,230,108 990E394B
03 - Differentiating Data, Features, Targets, and Models\11 - Introduction.mp4 [d3f852e158ca2220] 1,165,540 B4309CE7
03 - Differentiating Data, Features, Targets, and Models\12 - Moving from Raw Data to Features.mp4 [763dcec3f5fe9155] 2,359,729 AFA8B106
03 - Differentiating Data, Features, Targets, and Models\13 - 6 Characteristics of a Good Feature.mp4 [6e5e7fb75c5a50a4] 8,760,363 943867C2
03 - Differentiating Data, Features, Targets, and Models\14 - Define Target for ML Problems.mp4 [b822b3ed5e5248f0] 5,037,244 F9504B07
03 - Differentiating Data, Features, Targets, and Models\15 - Demo- Exploring Datasets for Different Problems.mp4 [e29e3ac74c396491] 4,557,535 0D24D147
03 - Differentiating Data, Features, Targets, and Models\16 - How Algorithms Learn Models.mp4 [aa9d748d30ec9f0b] 1,694,259 BE5D931F
03 - Differentiating Data, Features, Targets, and Models\17 - Demo- Modifying the Metadata of Datasets.mp4 [30009a267b2c7f59] 9,480,765 78965848
03 - Differentiating Data, Features, Targets, and Models\18 - Summary.mp4 [b1b508087a9397a0] 1,611,069 532BA536
04 - Preparing Input Data for Machine Learning Models\19 - Introduction.mp4 [82151b8c11c1908b] 1,869,293 327789CE
04 - Preparing Input Data for Machine Learning Models\20 - Data Preprocessing Methods.mp4 [e39d7db281f3503a] 661,426 E1CE482A
04 - Preparing Input Data for Machine Learning Models\21 - Entropy-based Discretization.mp4 [971a32ad7cca3a8b] 3,625,451 B782E1C8
04 - Preparing Input Data for Machine Learning Models\22 - Demo- Entropy-based Discretization.mp4 [2a9f7506d858a565] 1,152,232 33800597
04 - Preparing Input Data for Machine Learning Models\23 - Summary.mp4 [2a9f7506d858a565] 1,152,232 33800597
04 - Preparing Input Data for Machine Learning Models\24 - Demo- Exploratory Data Analysis.mp4 [657e2a18fb4fe8bf] 15,050,574 F23B691F
04 - Preparing Input Data for Machine Learning Models\25 - Demo- Data Cleaning (Erroneous Data).mp4 [ca403f8ffe52c9ec] 7,809,481 89FDE9C2
04 - Preparing Input Data for Machine Learning Models\26 - Demo- Data Cleaning (Outliers).mp4 [ed789b64eed56270] 7,346,536 A4102CDD
04 - Preparing Input Data for Machine Learning Models\27 - Demo- Data Cleaning (Duplicate Rows).mp4 [a60dd38a4f0779f0] 4,712,177 F76005B8
04 - Preparing Input Data for Machine Learning Models\28 - Demo- Data Transformation.mp4 [b2c9febedb1b536f] 9,925,586 4EED644C
04 - Preparing Input Data for Machine Learning Models\29 - Demo- Reducing Data (Record Sampling).mp4 [ea28f37b4d9db63c] 5,444,542 D4EEB244
04 - Preparing Input Data for Machine Learning Models\30 - Demo- Reducing Data (Attribute Sampling).mp4 [afcad46c77c7aa29] 2,734,259 80088434
04 - Preparing Input Data for Machine Learning Models\31 - Demo- Discretizing Data.mp4 [4e77fde985d83c6c] 8,140,931 C59848A2
05 - Handling Missing Data\32 - Introduction.mp4 [f24fce07a175a6f2] 1,493,110 E5F71357
05 - Handling Missing Data\33 - Reasons Why Data Is Missing.mp4 [47abadb6f8d0ecf0] 2,109,907 60F77070
05 - Handling Missing Data\34 - Demo- Listwise Deletion.mp4 [e2a452a6410b40a3] 9,233,053 49E02BAC
05 - Handling Missing Data\35 - Problems in Deleting Rows.mp4 [b5d84ab967330314] 3,762,721 389002FD
05 - Handling Missing Data\36 - Demo- Using Indicator Variables.mp4 [95281fd2d07f7511] 6,520,030 94ABD5B2
05 - Handling Missing Data\37 - Replace with Mean, Median, and Mode.mp4 [7c6c3aedce1bcbcb] 2,861,684 70860A29
05 - Handling Missing Data\38 - Disadvantages of Single Imputation Methods.mp4 [296b4e32e6def0dc] 3,240,156 57E48AD2
05 - Handling Missing Data\39 - Demo- Replace with MICE.mp4 [bea6df371d6bc391] 6,295,812 00417927
05 - Handling Missing Data\40 - How MICE Works.mp4 [a8fdc7afd9342d2] 2,302,885 387DEFBE
05 - Handling Missing Data\41 - Summary.mp4 [92fc56bf20bb1116] 803,587 709A6BFE
06 - Role of Feature Engineering in Machine Learning\42 - Introduction.mp4 [df01f8e51b3d2534] 1,223,342 37CBD66F
06 - Role of Feature Engineering in Machine Learning\43 - Why Feature Engineering.mp4 [57e044c5fb7d94de] 4,335,702 077B22A3
06 - Role of Feature Engineering in Machine Learning\44 - Role of Feature Engineering in Model Complexity.mp4 [dcbba139d94efd9c] 2,980,429 B38CCD96
06 - Role of Feature Engineering in Machine Learning\45 - Build Better Models with Feature Engineering.mp4 [6d8bf62a821ab48] 2,914,289 B162A451
06 - Role of Feature Engineering in Machine Learning\46 - Feature Engineering Numeric Variables.mp4 [efaa54bfc446fa51] 2,590,367 046A0A91
06 - Role of Feature Engineering in Machine Learning\47 - Feature Engineering Categorical Variables.mp4 [d85111446999d5e7] 3,257,317 D6FC936D
06 - Role of Feature Engineering in Machine Learning\48 - Demo- One-hot Encoding Categorical Variables.mp4 [b1e296d034775607] 12,801,149 89BC40A4
06 - Role of Feature Engineering in Machine Learning\49 - Demo- Learning with Counts Categorical Variables.mp4 [fc45368565db9931] 10,097,561 69DCD7C4
06 - Role of Feature Engineering in Machine Learning\50 - Summary.mp4 [1de23a74aaca3d7] 1,462,106 BE15A570
07 - Split a Data Set into Training and Testing Subsets\51 - Introduction.mp4 [886565e02922f411] 2,105,380 83C10CCC
07 - Split a Data Set into Training and Testing Subsets\52 - Demo- Training and Testing on Same Data.mp4 [186f3caecdf52433] 10,916,944 2EB2AD6D
07 - Split a Data Set into Training and Testing Subsets\53 - Demo- Split Data into Training and Test Set.mp4 [d23e6d76d21f082f] 8,580,663 06DE7F25
07 - Split a Data Set into Training and Testing Subsets\54 - Splitting Data for Model Tuning.mp4 [8e536b28a8c8af90] 11,950,649 9BBE8094
07 - Split a Data Set into Training and Testing Subsets\55 - Demo- Cross-validation.mp4 [2e329f4944d0612] 11,484,571 4A24F767
07 - Split a Data Set into Training and Testing Subsets\56 - Demo- Model Selection.mp4 [f1b077f95a9aa7bf] 9,529,598 438AE7BF
07 - Split a Data Set into Training and Testing Subsets\57 - Leave-one-out Cross Validation.mp4 [43361e17e4235e50] 1,898,082 CA4956DA
07 - Split a Data Set into Training and Testing Subsets\58 - Summary.mp4 [976143594b70c965] 1,466,550 D7ABCBF3
08 - Identify Data-level Issues In Machine Learning Models\59 - Introduction.mp4 [c90e48d06fe21c90] 1,257,340 2D7BEB2B
08 - Identify Data-level Issues In Machine Learning Models\60 - Imbalanced Dataset for Classification Problems.mp4 [e8c47cf7587eec08] 2,689,925 0DF256A5
08 - Identify Data-level Issues In Machine Learning Models\61 - Demo- SMOTE.mp4 [4c1efa5e93e4e230] 5,697,275 AB6200B5
08 - Identify Data-level Issues In Machine Learning Models\62 - Data Scale Issues in Distance-based Models.mp4 [56ca545873957836] 3,508,182 A2A930F3
08 - Identify Data-level Issues In Machine Learning Models\63 - Multicollinearity Problem in Regression Models.mp4 [f9c4075fec90bcd1] 3,546,606 9AEB80B8
08 - Identify Data-level Issues In Machine Learning Models\64 - Outliers in Regression Models.mp4 [51b3d04a5b2f6148] 3,455,601 69257CE8
08 - Identify Data-level Issues In Machine Learning Models\65 - Problem with High-dimensional Datasets.mp4 [40017c8b72706e35] 4,170,318 83AD0027
08 - Identify Data-level Issues In Machine Learning Models\66 - Summary.mp4 [220aa8faf9a74f5b] 1,382,123 34473B20
preparing-data-machine-learning.zip 5,165,227 91AD7BC4
01 - Course Overview 0 00000000
02 - Getting Started with Azure Machine Learning 0 00000000
03 - Differentiating Data, Features, Targets, and Models 0 00000000
04 - Preparing Input Data for Machine Learning Models 0 00000000
05 - Handling Missing Data 0 00000000
06 - Role of Feature Engineering in Machine Learning 0 00000000
07 - Split a Data Set into Training and Testing Subsets 0 00000000
08 - Identify Data-level Issues In Machine Learning Models 0 00000000

Total size: 324,112,995
RAR Recovery
Not Present
Labels UNKNOWN