RAR-files |
rebar-preparing.data.for.feature.engineering.and.machine.learning.in.microsoft.azure.rar |
15,000,000 |
E4218D48 |
rebar-preparing.data.for.feature.engineering.and.machine.learning.in.microsoft.azure.r00 |
15,000,000 |
9F477F98 |
rebar-preparing.data.for.feature.engineering.and.machine.learning.in.microsoft.azure.r01 |
15,000,000 |
BAAE359F |
rebar-preparing.data.for.feature.engineering.and.machine.learning.in.microsoft.azure.r02 |
15,000,000 |
DCCE0C66 |
rebar-preparing.data.for.feature.engineering.and.machine.learning.in.microsoft.azure.r03 |
15,000,000 |
D2D36B1D |
rebar-preparing.data.for.feature.engineering.and.machine.learning.in.microsoft.azure.r04 |
15,000,000 |
54EF9FDF |
rebar-preparing.data.for.feature.engineering.and.machine.learning.in.microsoft.azure.r05 |
15,000,000 |
B0AE9A03 |
rebar-preparing.data.for.feature.engineering.and.machine.learning.in.microsoft.azure.r06 |
15,000,000 |
7B1536AA |
rebar-preparing.data.for.feature.engineering.and.machine.learning.in.microsoft.azure.r07 |
15,000,000 |
2CF41416 |
rebar-preparing.data.for.feature.engineering.and.machine.learning.in.microsoft.azure.r08 |
15,000,000 |
FBE9F657 |
rebar-preparing.data.for.feature.engineering.and.machine.learning.in.microsoft.azure.r09 |
15,000,000 |
AD85962E |
rebar-preparing.data.for.feature.engineering.and.machine.learning.in.microsoft.azure.r10 |
15,000,000 |
849B2304 |
rebar-preparing.data.for.feature.engineering.and.machine.learning.in.microsoft.azure.r11 |
15,000,000 |
A8639A0B |
rebar-preparing.data.for.feature.engineering.and.machine.learning.in.microsoft.azure.r12 |
15,000,000 |
09A67EDF |
rebar-preparing.data.for.feature.engineering.and.machine.learning.in.microsoft.azure.r13 |
15,000,000 |
E92761E5 |
rebar-preparing.data.for.feature.engineering.and.machine.learning.in.microsoft.azure.r14 |
15,000,000 |
311D0EA0 |
rebar-preparing.data.for.feature.engineering.and.machine.learning.in.microsoft.azure.r15 |
15,000,000 |
9BEEF5A3 |
rebar-preparing.data.for.feature.engineering.and.machine.learning.in.microsoft.azure.r16 |
15,000,000 |
37DF6805 |
rebar-preparing.data.for.feature.engineering.and.machine.learning.in.microsoft.azure.r17 |
15,000,000 |
07DE0B59 |
rebar-preparing.data.for.feature.engineering.and.machine.learning.in.microsoft.azure.r18 |
15,000,000 |
08C9BC28 |
rebar-preparing.data.for.feature.engineering.and.machine.learning.in.microsoft.azure.r19 |
15,000,000 |
A9F8DB15 |
rebar-preparing.data.for.feature.engineering.and.machine.learning.in.microsoft.azure.r20 |
9,125,173 |
541BD977 |
|
Total size: |
324,125,173 |
|
|
Archived
files |
01 - Course Overview\01 - Course Overview.mp4
[a31c84f3464009a7]
|
3,861,935 |
F0A694F2 |
02 - Getting Started with Azure Machine Learning\02 - Introduction.mp4
[7ab9c0626835e93a]
|
4,132,931 |
61EB3D68 |
02 - Getting Started with Azure Machine Learning\03 - What Is Machine Learning-.mp4
[16167ae5af2a58e1]
|
4,908,900 |
EA8F5003 |
02 - Getting Started with Azure Machine Learning\04 - Introduction to Azure Machine Learning.mp4
[9af0127e5e31488c]
|
3,534,023 |
7A88D313 |
02 - Getting Started with Azure Machine Learning\05 - Azure Machine Learning Experiment Workflow.mp4
[2e8bbe2c4fabd27e]
|
3,311,264 |
BC011C6E |
02 - Getting Started with Azure Machine Learning\06 - Prerequisites.mp4
[b7fb55fe665c1025]
|
580,564 |
EE67D476 |
02 - Getting Started with Azure Machine Learning\07 - Demo- Creating an Azure Machine Learning Studio Workspace.mp4
[f983aeca324831f0]
|
11,899,644 |
934830FA |
02 - Getting Started with Azure Machine Learning\08 - Demo- Creating an Azure Machine Learning Service Workspace.mp4
[4a386fc4f769c505]
|
7,573,292 |
03A3DFEF |
02 - Getting Started with Azure Machine Learning\09 - Demo- Exploring the Dataset.mp4
[d34a668093a310ea]
|
9,698,869 |
5DB836C7 |
02 - Getting Started with Azure Machine Learning\10 - Summary.mp4
[5d6ba72a5fd34a96]
|
1,230,108 |
990E394B |
03 - Differentiating Data, Features, Targets, and Models\11 - Introduction.mp4
[d3f852e158ca2220]
|
1,165,540 |
B4309CE7 |
03 - Differentiating Data, Features, Targets, and Models\12 - Moving from Raw Data to Features.mp4
[763dcec3f5fe9155]
|
2,359,729 |
AFA8B106 |
03 - Differentiating Data, Features, Targets, and Models\13 - 6 Characteristics of a Good Feature.mp4
[6e5e7fb75c5a50a4]
|
8,760,363 |
943867C2 |
03 - Differentiating Data, Features, Targets, and Models\14 - Define Target for ML Problems.mp4
[b822b3ed5e5248f0]
|
5,037,244 |
F9504B07 |
03 - Differentiating Data, Features, Targets, and Models\15 - Demo- Exploring Datasets for Different Problems.mp4
[e29e3ac74c396491]
|
4,557,535 |
0D24D147 |
03 - Differentiating Data, Features, Targets, and Models\16 - How Algorithms Learn Models.mp4
[aa9d748d30ec9f0b]
|
1,694,259 |
BE5D931F |
03 - Differentiating Data, Features, Targets, and Models\17 - Demo- Modifying the Metadata of Datasets.mp4
[30009a267b2c7f59]
|
9,480,765 |
78965848 |
03 - Differentiating Data, Features, Targets, and Models\18 - Summary.mp4
[b1b508087a9397a0]
|
1,611,069 |
532BA536 |
04 - Preparing Input Data for Machine Learning Models\19 - Introduction.mp4
[82151b8c11c1908b]
|
1,869,293 |
327789CE |
04 - Preparing Input Data for Machine Learning Models\20 - Data Preprocessing Methods.mp4
[e39d7db281f3503a]
|
661,426 |
E1CE482A |
04 - Preparing Input Data for Machine Learning Models\21 - Entropy-based Discretization.mp4
[971a32ad7cca3a8b]
|
3,625,451 |
B782E1C8 |
04 - Preparing Input Data for Machine Learning Models\22 - Demo- Entropy-based Discretization.mp4
[2a9f7506d858a565]
|
1,152,232 |
33800597 |
04 - Preparing Input Data for Machine Learning Models\23 - Summary.mp4
[2a9f7506d858a565]
|
1,152,232 |
33800597 |
04 - Preparing Input Data for Machine Learning Models\24 - Demo- Exploratory Data Analysis.mp4
[657e2a18fb4fe8bf]
|
15,050,574 |
F23B691F |
04 - Preparing Input Data for Machine Learning Models\25 - Demo- Data Cleaning (Erroneous Data).mp4
[ca403f8ffe52c9ec]
|
7,809,481 |
89FDE9C2 |
04 - Preparing Input Data for Machine Learning Models\26 - Demo- Data Cleaning (Outliers).mp4
[ed789b64eed56270]
|
7,346,536 |
A4102CDD |
04 - Preparing Input Data for Machine Learning Models\27 - Demo- Data Cleaning (Duplicate Rows).mp4
[a60dd38a4f0779f0]
|
4,712,177 |
F76005B8 |
04 - Preparing Input Data for Machine Learning Models\28 - Demo- Data Transformation.mp4
[b2c9febedb1b536f]
|
9,925,586 |
4EED644C |
04 - Preparing Input Data for Machine Learning Models\29 - Demo- Reducing Data (Record Sampling).mp4
[ea28f37b4d9db63c]
|
5,444,542 |
D4EEB244 |
04 - Preparing Input Data for Machine Learning Models\30 - Demo- Reducing Data (Attribute Sampling).mp4
[afcad46c77c7aa29]
|
2,734,259 |
80088434 |
04 - Preparing Input Data for Machine Learning Models\31 - Demo- Discretizing Data.mp4
[4e77fde985d83c6c]
|
8,140,931 |
C59848A2 |
05 - Handling Missing Data\32 - Introduction.mp4
[f24fce07a175a6f2]
|
1,493,110 |
E5F71357 |
05 - Handling Missing Data\33 - Reasons Why Data Is Missing.mp4
[47abadb6f8d0ecf0]
|
2,109,907 |
60F77070 |
05 - Handling Missing Data\34 - Demo- Listwise Deletion.mp4
[e2a452a6410b40a3]
|
9,233,053 |
49E02BAC |
05 - Handling Missing Data\35 - Problems in Deleting Rows.mp4
[b5d84ab967330314]
|
3,762,721 |
389002FD |
05 - Handling Missing Data\36 - Demo- Using Indicator Variables.mp4
[95281fd2d07f7511]
|
6,520,030 |
94ABD5B2 |
05 - Handling Missing Data\37 - Replace with Mean, Median, and Mode.mp4
[7c6c3aedce1bcbcb]
|
2,861,684 |
70860A29 |
05 - Handling Missing Data\38 - Disadvantages of Single Imputation Methods.mp4
[296b4e32e6def0dc]
|
3,240,156 |
57E48AD2 |
05 - Handling Missing Data\39 - Demo- Replace with MICE.mp4
[bea6df371d6bc391]
|
6,295,812 |
00417927 |
05 - Handling Missing Data\40 - How MICE Works.mp4
[a8fdc7afd9342d2]
|
2,302,885 |
387DEFBE |
05 - Handling Missing Data\41 - Summary.mp4
[92fc56bf20bb1116]
|
803,587 |
709A6BFE |
06 - Role of Feature Engineering in Machine Learning\42 - Introduction.mp4
[df01f8e51b3d2534]
|
1,223,342 |
37CBD66F |
06 - Role of Feature Engineering in Machine Learning\43 - Why Feature Engineering.mp4
[57e044c5fb7d94de]
|
4,335,702 |
077B22A3 |
06 - Role of Feature Engineering in Machine Learning\44 - Role of Feature Engineering in Model Complexity.mp4
[dcbba139d94efd9c]
|
2,980,429 |
B38CCD96 |
06 - Role of Feature Engineering in Machine Learning\45 - Build Better Models with Feature Engineering.mp4
[6d8bf62a821ab48]
|
2,914,289 |
B162A451 |
06 - Role of Feature Engineering in Machine Learning\46 - Feature Engineering Numeric Variables.mp4
[efaa54bfc446fa51]
|
2,590,367 |
046A0A91 |
06 - Role of Feature Engineering in Machine Learning\47 - Feature Engineering Categorical Variables.mp4
[d85111446999d5e7]
|
3,257,317 |
D6FC936D |
06 - Role of Feature Engineering in Machine Learning\48 - Demo- One-hot Encoding Categorical Variables.mp4
[b1e296d034775607]
|
12,801,149 |
89BC40A4 |
06 - Role of Feature Engineering in Machine Learning\49 - Demo- Learning with Counts Categorical Variables.mp4
[fc45368565db9931]
|
10,097,561 |
69DCD7C4 |
06 - Role of Feature Engineering in Machine Learning\50 - Summary.mp4
[1de23a74aaca3d7]
|
1,462,106 |
BE15A570 |
07 - Split a Data Set into Training and Testing Subsets\51 - Introduction.mp4
[886565e02922f411]
|
2,105,380 |
83C10CCC |
07 - Split a Data Set into Training and Testing Subsets\52 - Demo- Training and Testing on Same Data.mp4
[186f3caecdf52433]
|
10,916,944 |
2EB2AD6D |
07 - Split a Data Set into Training and Testing Subsets\53 - Demo- Split Data into Training and Test Set.mp4
[d23e6d76d21f082f]
|
8,580,663 |
06DE7F25 |
07 - Split a Data Set into Training and Testing Subsets\54 - Splitting Data for Model Tuning.mp4
[8e536b28a8c8af90]
|
11,950,649 |
9BBE8094 |
07 - Split a Data Set into Training and Testing Subsets\55 - Demo- Cross-validation.mp4
[2e329f4944d0612]
|
11,484,571 |
4A24F767 |
07 - Split a Data Set into Training and Testing Subsets\56 - Demo- Model Selection.mp4
[f1b077f95a9aa7bf]
|
9,529,598 |
438AE7BF |
07 - Split a Data Set into Training and Testing Subsets\57 - Leave-one-out Cross Validation.mp4
[43361e17e4235e50]
|
1,898,082 |
CA4956DA |
07 - Split a Data Set into Training and Testing Subsets\58 - Summary.mp4
[976143594b70c965]
|
1,466,550 |
D7ABCBF3 |
08 - Identify Data-level Issues In Machine Learning Models\59 - Introduction.mp4
[c90e48d06fe21c90]
|
1,257,340 |
2D7BEB2B |
08 - Identify Data-level Issues In Machine Learning Models\60 - Imbalanced Dataset for Classification Problems.mp4
[e8c47cf7587eec08]
|
2,689,925 |
0DF256A5 |
08 - Identify Data-level Issues In Machine Learning Models\61 - Demo- SMOTE.mp4
[4c1efa5e93e4e230]
|
5,697,275 |
AB6200B5 |
08 - Identify Data-level Issues In Machine Learning Models\62 - Data Scale Issues in Distance-based Models.mp4
[56ca545873957836]
|
3,508,182 |
A2A930F3 |
08 - Identify Data-level Issues In Machine Learning Models\63 - Multicollinearity Problem in Regression Models.mp4
[f9c4075fec90bcd1]
|
3,546,606 |
9AEB80B8 |
08 - Identify Data-level Issues In Machine Learning Models\64 - Outliers in Regression Models.mp4
[51b3d04a5b2f6148]
|
3,455,601 |
69257CE8 |
08 - Identify Data-level Issues In Machine Learning Models\65 - Problem with High-dimensional Datasets.mp4
[40017c8b72706e35]
|
4,170,318 |
83AD0027 |
08 - Identify Data-level Issues In Machine Learning Models\66 - Summary.mp4
[220aa8faf9a74f5b]
|
1,382,123 |
34473B20 |
preparing-data-machine-learning.zip |
5,165,227 |
91AD7BC4 |
01 - Course Overview |
0 |
00000000 |
02 - Getting Started with Azure Machine Learning |
0 |
00000000 |
03 - Differentiating Data, Features, Targets, and Models |
0 |
00000000 |
04 - Preparing Input Data for Machine Learning Models |
0 |
00000000 |
05 - Handling Missing Data |
0 |
00000000 |
06 - Role of Feature Engineering in Machine Learning |
0 |
00000000 |
07 - Split a Data Set into Training and Testing Subsets |
0 |
00000000 |
08 - Identify Data-level Issues In Machine Learning Models |
0 |
00000000 |
|
Total size: |
324,112,995 |
|
|