Don't throw away old warez disks! Save the gems!
  • Anonymous
  • 2020-04-15 21:43:17
  • Unknown

RELEASE >

ReScene version pyReScene Auto 0.7 REBAR File size CRC
Download
15,915
Stored files
191 1BF27131
1,232 85C09A1A
RAR-files
rebar-production.machine.learning.systems.rar 50,000,000 5B9BFD8F
rebar-production.machine.learning.systems.r00 50,000,000 E9B06CD2
rebar-production.machine.learning.systems.r01 50,000,000 2EF6020E
rebar-production.machine.learning.systems.r02 50,000,000 89643CF1
rebar-production.machine.learning.systems.r03 50,000,000 967171AA
rebar-production.machine.learning.systems.r04 50,000,000 6E2375F5
rebar-production.machine.learning.systems.r05 50,000,000 512763BD
rebar-production.machine.learning.systems.r06 50,000,000 09AC1607
rebar-production.machine.learning.systems.r07 50,000,000 D4FB94B6
rebar-production.machine.learning.systems.r08 50,000,000 575D7868
rebar-production.machine.learning.systems.r09 50,000,000 031A7C45
rebar-production.machine.learning.systems.r10 50,000,000 445E9B5B
rebar-production.machine.learning.systems.r11 50,000,000 2A8D4A70
rebar-production.machine.learning.systems.r12 50,000,000 C42613BA
rebar-production.machine.learning.systems.r13 50,000,000 893BCD6A
rebar-production.machine.learning.systems.r14 50,000,000 69F2DFEB
rebar-production.machine.learning.systems.r15 50,000,000 45C23236
rebar-production.machine.learning.systems.r16 50,000,000 2CE144D2
rebar-production.machine.learning.systems.r17 50,000,000 49B24937
rebar-production.machine.learning.systems.r18 50,000,000 0368CD99
rebar-production.machine.learning.systems.r19 50,000,000 16B855CE
rebar-production.machine.learning.systems.r20 6,102,499 47E9F3E8

Total size: 1,056,102,499
Archived files
01 - Welcome to the course\01 - Course Introduction.mp4 [c77572a3a486ffb8] 25,262,520 320DB73B
01 - Welcome to the course\02 - Getting started with GCP and Qwiklabs.mp4 [fd2b39d2bbecc5e5] 9,984,917 C6EA6EE3
02 - Architecting Production ML Systems\03 - Introduction.mp4 [8f8b0327f945926e] 13,066,091 E0A42B60
02 - Architecting Production ML Systems\04 - The Components of an ML System.mp4 [64cc51aa5b4d0448] 5,122,125 352F3C47
02 - Architecting Production ML Systems\05 - The Components of an ML System -Data Analysis and Validation.mp4 [2cffc9046c39ad7c] 41,850,733 8B266B6E
02 - Architecting Production ML Systems\06 - The Components of an ML System -Data Transformation + Trainer.mp4 [35678ae250805be7] 4,137,001 1B562C4F
02 - Architecting Production ML Systems\07 - The Components of an ML System -Tuner + Model Evaluation and Validation.mp4 [4d99c5d1ca7e6077] 13,567,823 33CB1136
02 - Architecting Production ML Systems\08 - The Components of an ML System -Serving.mp4 [37431a564aa9bd3a] 8,047,244 7392DFB6
02 - Architecting Production ML Systems\09 - The Components of an ML System -Orchestration + Workflow.mp4 [4bfc2138e570b77d] 26,440,056 B7D60BD6
02 - Architecting Production ML Systems\10 - The Components of an ML System -Integrated Frontend + Storage.mp4 [ecf37ee8e3260185] 6,223,967 1FCC95D1
02 - Architecting Production ML Systems\11 - Training Design Decisions.mp4 [250b26d903d7240f] 23,685,939 7CB44CE2
02 - Architecting Production ML Systems\12 - Serving Design Decisions.mp4 [695701cc452f7c5e] 35,193,270 209CEEFC
02 - Architecting Production ML Systems\13 - Lab Intro -Serving on Cloud AI Platform.mp4 [9565df1703f49f7c] 15,253,026 D2D7C3F0
02 - Architecting Production ML Systems\14 - Serving on Cloud AI Platform.mp4 [4fc595629ce62905] 236,088 3DA81ABB
02 - Architecting Production ML Systems\15 - Lab Solution -Serving on Cloud AI Platform.mp4 [adb185fdfee1ff29] 11,375,508 EEB591F3
02 - Architecting Production ML Systems\16 - Designing from Scratch.mp4 [b5b0e4df1a8a0070] 22,417,001 A9A0FED3
03 - Ingesting data for Cloud-based analytics and ML\17 - Introduction.mp4 [fcf37e2a246ab93d] 24,934,927 CA206729
03 - Ingesting data for Cloud-based analytics and ML\18 - Data On-Premise.mp4 [e595ad5aeda79452] 20,342,287 061FE508
03 - Ingesting data for Cloud-based analytics and ML\19 - Large Datasets.mp4 [a29b4cf3f90889d2] 37,311,023 3CEF212E
03 - Ingesting data for Cloud-based analytics and ML\20 - Data on Other Clouds.mp4 [796c8ed8a3c3692b] 17,700,228 63E4275E
03 - Ingesting data for Cloud-based analytics and ML\21 - Existing Databases.mp4 [b78d3fd8e4c107ec] 11,833,622 D9927ED0
03 - Ingesting data for Cloud-based analytics and ML\22 - Demo -Load data into BigQuery.mp4 [acc3469b0e3a743a] 18,595,479 94A2390C
03 - Ingesting data for Cloud-based analytics and ML\23 - Demo -Automatic ETL Pipelines into GCP.mp4 [836a29be82a4f69e] 7,903,424 74729566
04 - Designing Adaptable ML systems\24 - Introduction.mp4 [fe8cff1ed30a1f6f] 43,226,131 C975B7E3
04 - Designing Adaptable ML systems\25 - Adapting to Data.mp4 [e483c7c73db2ba9] 22,632,777 E96BF6C8
04 - Designing Adaptable ML systems\26 - Changing Distributions.mp4 [6904dda6d5f05151] 38,809,722 D65D99CC
04 - Designing Adaptable ML systems\27 - Exercise -Adapting to Data.mp4 [4ad97410f6c54159] 14,932,303 2A340C66
04 - Designing Adaptable ML systems\28 - Right and Wrong Decisions.mp4 [44655301b0220b9d] 39,595,305 0F9EA4F6
04 - Designing Adaptable ML systems\29 - System Failure.mp4 [2e05f3af43aee9bd] 18,484,471 86E66AEB
04 - Designing Adaptable ML systems\30 - Mitigating Training-Serving Skew through Design.mp4 [c837749eeb715874] 13,396,113 4EEF5876
04 - Designing Adaptable ML systems\31 - Lab Intro -Serving ML Predictions in batch and real-time.mp4 [b828a8e9b8440b75] 12,330,941 3B4BC64E
04 - Designing Adaptable ML systems\32 - Serving ML Predictions in batch and real-time.mp4 [7393422924fa6cde] 247,658 4FF994E3
04 - Designing Adaptable ML systems\33 - Lab Solution -Serving ML Predictions in batch and real-time.mp4 [ba8d91b3878768dc] 32,273,065 438BBD9A
04 - Designing Adaptable ML systems\34 - Debugging a Production Model.mp4 [45663e7b76a2151e] 20,879,630 D0675F6B
04 - Designing Adaptable ML systems\35 - Summary.mp4 [9c13081c196d63fc] 13,242,710 6FD74FCF
05 - Designing High-performance ML systems\36 - Introduction.mp4 [bcc5e5f11d7ce892] 8,841,185 5D4D6683
05 - Designing High-performance ML systems\37 - Training.mp4 [2e42458fe85d1eef] 28,674,997 47938D26
05 - Designing High-performance ML systems\38 - Predictions.mp4 [23a607c4ee5e5128] 23,547,376 B24639ED
05 - Designing High-performance ML systems\39 - Why distributed training.mp4 [6b15634bc2390f4] 25,653,805 8FC4B12B
05 - Designing High-performance ML systems\40 - Distributed training architectures.mp4 [5c4c9eed37066691] 22,093,327 7A2BB5E7
05 - Designing High-performance ML systems\41 - Faster input pipelines.mp4 [539ea94c04d7f22b] 10,758,552 6F21462B
05 - Designing High-performance ML systems\42 - Native TensorFlow Operations.mp4 [3bb443399849c299] 5,595,769 C26685C3
05 - Designing High-performance ML systems\43 - TensorFlow Records.mp4 [ff1943a68075e4c0] 3,171,771 D6CD0992
05 - Designing High-performance ML systems\44 - Parallel pipelines.mp4 [3f83d828828330e8] 9,454,447 D66473C6
05 - Designing High-performance ML systems\45 - Data parallelism with All Reduce.mp4 [9ce397e312a17da6] 19,355,391 8F30C947
05 - Designing High-performance ML systems\46 - Parameter Server Approach.mp4 [9eb584fcf9f7e52] 11,959,047 6CC175DD
05 - Designing High-performance ML systems\47 - Inference.mp4 [7661a0a0605e1435] 17,331,161 43AB2EC6
06 - Hybrid ML systems\48 - Introduction.mp4 [ed7ec167d88ce86] 27,303,863 0AB12E36
06 - Hybrid ML systems\49 - Machine Learning on Hybrid Cloud.mp4 [760a6b73877d8da3] 17,655,367 20BEAAD6
06 - Hybrid ML systems\50 - KubeFlow.mp4 [109aec069db611] 18,161,791 7EB1D78E
06 - Hybrid ML systems\51 - Demo -KubeFlow.mp4 [a825be827884f80f] 52,160,648 A6E03A3F
06 - Hybrid ML systems\52 - Kubeflow - End to End.mp4 [58292083bdc5d936] 228,871 235FEF76
06 - Hybrid ML systems\53 - Embedded Models.mp4 [46642d30755e1b48] 9,494,165 BC171440
06 - Hybrid ML systems\54 - TensorFlow Lite.mp4 [b21c9937e0abb961] 5,051,627 0D4DB080
06 - Hybrid ML systems\55 - Optimizing for Mobile.mp4 [2add2e9dcfaa7c2e] 36,161,575 67AA8F93
06 - Hybrid ML systems\56 - Summary.mp4 [8791868187ae22e3] 16,079,049 C6AE999C
07 - Course Summary\57 - Summary.mp4 [5e661c01f89e6b9] 16,823,889 D5426928
01 - Welcome to the course 0 00000000
02 - Architecting Production ML Systems 0 00000000
03 - Ingesting data for Cloud-based analytics and ML 0 00000000
04 - Designing Adaptable ML systems 0 00000000
05 - Designing High-performance ML systems 0 00000000
06 - Hybrid ML systems 0 00000000
07 - Course Summary 0 00000000

Total size: 1,056,092,798
RAR Recovery
Not Present
Labels UNKNOWN