RAR-files |
rebar-production.machine.learning.systems.rar |
50,000,000 |
5B9BFD8F |
rebar-production.machine.learning.systems.r00 |
50,000,000 |
E9B06CD2 |
rebar-production.machine.learning.systems.r01 |
50,000,000 |
2EF6020E |
rebar-production.machine.learning.systems.r02 |
50,000,000 |
89643CF1 |
rebar-production.machine.learning.systems.r03 |
50,000,000 |
967171AA |
rebar-production.machine.learning.systems.r04 |
50,000,000 |
6E2375F5 |
rebar-production.machine.learning.systems.r05 |
50,000,000 |
512763BD |
rebar-production.machine.learning.systems.r06 |
50,000,000 |
09AC1607 |
rebar-production.machine.learning.systems.r07 |
50,000,000 |
D4FB94B6 |
rebar-production.machine.learning.systems.r08 |
50,000,000 |
575D7868 |
rebar-production.machine.learning.systems.r09 |
50,000,000 |
031A7C45 |
rebar-production.machine.learning.systems.r10 |
50,000,000 |
445E9B5B |
rebar-production.machine.learning.systems.r11 |
50,000,000 |
2A8D4A70 |
rebar-production.machine.learning.systems.r12 |
50,000,000 |
C42613BA |
rebar-production.machine.learning.systems.r13 |
50,000,000 |
893BCD6A |
rebar-production.machine.learning.systems.r14 |
50,000,000 |
69F2DFEB |
rebar-production.machine.learning.systems.r15 |
50,000,000 |
45C23236 |
rebar-production.machine.learning.systems.r16 |
50,000,000 |
2CE144D2 |
rebar-production.machine.learning.systems.r17 |
50,000,000 |
49B24937 |
rebar-production.machine.learning.systems.r18 |
50,000,000 |
0368CD99 |
rebar-production.machine.learning.systems.r19 |
50,000,000 |
16B855CE |
rebar-production.machine.learning.systems.r20 |
6,102,499 |
47E9F3E8 |
|
Total size: |
1,056,102,499 |
|
|
Archived
files |
01 - Welcome to the course\01 - Course Introduction.mp4
[c77572a3a486ffb8]
|
25,262,520 |
320DB73B |
01 - Welcome to the course\02 - Getting started with GCP and Qwiklabs.mp4
[fd2b39d2bbecc5e5]
|
9,984,917 |
C6EA6EE3 |
02 - Architecting Production ML Systems\03 - Introduction.mp4
[8f8b0327f945926e]
|
13,066,091 |
E0A42B60 |
02 - Architecting Production ML Systems\04 - The Components of an ML System.mp4
[64cc51aa5b4d0448]
|
5,122,125 |
352F3C47 |
02 - Architecting Production ML Systems\05 - The Components of an ML System -Data Analysis and Validation.mp4
[2cffc9046c39ad7c]
|
41,850,733 |
8B266B6E |
02 - Architecting Production ML Systems\06 - The Components of an ML System -Data Transformation + Trainer.mp4
[35678ae250805be7]
|
4,137,001 |
1B562C4F |
02 - Architecting Production ML Systems\07 - The Components of an ML System -Tuner + Model Evaluation and Validation.mp4
[4d99c5d1ca7e6077]
|
13,567,823 |
33CB1136 |
02 - Architecting Production ML Systems\08 - The Components of an ML System -Serving.mp4
[37431a564aa9bd3a]
|
8,047,244 |
7392DFB6 |
02 - Architecting Production ML Systems\09 - The Components of an ML System -Orchestration + Workflow.mp4
[4bfc2138e570b77d]
|
26,440,056 |
B7D60BD6 |
02 - Architecting Production ML Systems\10 - The Components of an ML System -Integrated Frontend + Storage.mp4
[ecf37ee8e3260185]
|
6,223,967 |
1FCC95D1 |
02 - Architecting Production ML Systems\11 - Training Design Decisions.mp4
[250b26d903d7240f]
|
23,685,939 |
7CB44CE2 |
02 - Architecting Production ML Systems\12 - Serving Design Decisions.mp4
[695701cc452f7c5e]
|
35,193,270 |
209CEEFC |
02 - Architecting Production ML Systems\13 - Lab Intro -Serving on Cloud AI Platform.mp4
[9565df1703f49f7c]
|
15,253,026 |
D2D7C3F0 |
02 - Architecting Production ML Systems\14 - Serving on Cloud AI Platform.mp4
[4fc595629ce62905]
|
236,088 |
3DA81ABB |
02 - Architecting Production ML Systems\15 - Lab Solution -Serving on Cloud AI Platform.mp4
[adb185fdfee1ff29]
|
11,375,508 |
EEB591F3 |
02 - Architecting Production ML Systems\16 - Designing from Scratch.mp4
[b5b0e4df1a8a0070]
|
22,417,001 |
A9A0FED3 |
03 - Ingesting data for Cloud-based analytics and ML\17 - Introduction.mp4
[fcf37e2a246ab93d]
|
24,934,927 |
CA206729 |
03 - Ingesting data for Cloud-based analytics and ML\18 - Data On-Premise.mp4
[e595ad5aeda79452]
|
20,342,287 |
061FE508 |
03 - Ingesting data for Cloud-based analytics and ML\19 - Large Datasets.mp4
[a29b4cf3f90889d2]
|
37,311,023 |
3CEF212E |
03 - Ingesting data for Cloud-based analytics and ML\20 - Data on Other Clouds.mp4
[796c8ed8a3c3692b]
|
17,700,228 |
63E4275E |
03 - Ingesting data for Cloud-based analytics and ML\21 - Existing Databases.mp4
[b78d3fd8e4c107ec]
|
11,833,622 |
D9927ED0 |
03 - Ingesting data for Cloud-based analytics and ML\22 - Demo -Load data into BigQuery.mp4
[acc3469b0e3a743a]
|
18,595,479 |
94A2390C |
03 - Ingesting data for Cloud-based analytics and ML\23 - Demo -Automatic ETL Pipelines into GCP.mp4
[836a29be82a4f69e]
|
7,903,424 |
74729566 |
04 - Designing Adaptable ML systems\24 - Introduction.mp4
[fe8cff1ed30a1f6f]
|
43,226,131 |
C975B7E3 |
04 - Designing Adaptable ML systems\25 - Adapting to Data.mp4
[e483c7c73db2ba9]
|
22,632,777 |
E96BF6C8 |
04 - Designing Adaptable ML systems\26 - Changing Distributions.mp4
[6904dda6d5f05151]
|
38,809,722 |
D65D99CC |
04 - Designing Adaptable ML systems\27 - Exercise -Adapting to Data.mp4
[4ad97410f6c54159]
|
14,932,303 |
2A340C66 |
04 - Designing Adaptable ML systems\28 - Right and Wrong Decisions.mp4
[44655301b0220b9d]
|
39,595,305 |
0F9EA4F6 |
04 - Designing Adaptable ML systems\29 - System Failure.mp4
[2e05f3af43aee9bd]
|
18,484,471 |
86E66AEB |
04 - Designing Adaptable ML systems\30 - Mitigating Training-Serving Skew through Design.mp4
[c837749eeb715874]
|
13,396,113 |
4EEF5876 |
04 - Designing Adaptable ML systems\31 - Lab Intro -Serving ML Predictions in batch and real-time.mp4
[b828a8e9b8440b75]
|
12,330,941 |
3B4BC64E |
04 - Designing Adaptable ML systems\32 - Serving ML Predictions in batch and real-time.mp4
[7393422924fa6cde]
|
247,658 |
4FF994E3 |
04 - Designing Adaptable ML systems\33 - Lab Solution -Serving ML Predictions in batch and real-time.mp4
[ba8d91b3878768dc]
|
32,273,065 |
438BBD9A |
04 - Designing Adaptable ML systems\34 - Debugging a Production Model.mp4
[45663e7b76a2151e]
|
20,879,630 |
D0675F6B |
04 - Designing Adaptable ML systems\35 - Summary.mp4
[9c13081c196d63fc]
|
13,242,710 |
6FD74FCF |
05 - Designing High-performance ML systems\36 - Introduction.mp4
[bcc5e5f11d7ce892]
|
8,841,185 |
5D4D6683 |
05 - Designing High-performance ML systems\37 - Training.mp4
[2e42458fe85d1eef]
|
28,674,997 |
47938D26 |
05 - Designing High-performance ML systems\38 - Predictions.mp4
[23a607c4ee5e5128]
|
23,547,376 |
B24639ED |
05 - Designing High-performance ML systems\39 - Why distributed training.mp4
[6b15634bc2390f4]
|
25,653,805 |
8FC4B12B |
05 - Designing High-performance ML systems\40 - Distributed training architectures.mp4
[5c4c9eed37066691]
|
22,093,327 |
7A2BB5E7 |
05 - Designing High-performance ML systems\41 - Faster input pipelines.mp4
[539ea94c04d7f22b]
|
10,758,552 |
6F21462B |
05 - Designing High-performance ML systems\42 - Native TensorFlow Operations.mp4
[3bb443399849c299]
|
5,595,769 |
C26685C3 |
05 - Designing High-performance ML systems\43 - TensorFlow Records.mp4
[ff1943a68075e4c0]
|
3,171,771 |
D6CD0992 |
05 - Designing High-performance ML systems\44 - Parallel pipelines.mp4
[3f83d828828330e8]
|
9,454,447 |
D66473C6 |
05 - Designing High-performance ML systems\45 - Data parallelism with All Reduce.mp4
[9ce397e312a17da6]
|
19,355,391 |
8F30C947 |
05 - Designing High-performance ML systems\46 - Parameter Server Approach.mp4
[9eb584fcf9f7e52]
|
11,959,047 |
6CC175DD |
05 - Designing High-performance ML systems\47 - Inference.mp4
[7661a0a0605e1435]
|
17,331,161 |
43AB2EC6 |
06 - Hybrid ML systems\48 - Introduction.mp4
[ed7ec167d88ce86]
|
27,303,863 |
0AB12E36 |
06 - Hybrid ML systems\49 - Machine Learning on Hybrid Cloud.mp4
[760a6b73877d8da3]
|
17,655,367 |
20BEAAD6 |
06 - Hybrid ML systems\50 - KubeFlow.mp4
[109aec069db611]
|
18,161,791 |
7EB1D78E |
06 - Hybrid ML systems\51 - Demo -KubeFlow.mp4
[a825be827884f80f]
|
52,160,648 |
A6E03A3F |
06 - Hybrid ML systems\52 - Kubeflow - End to End.mp4
[58292083bdc5d936]
|
228,871 |
235FEF76 |
06 - Hybrid ML systems\53 - Embedded Models.mp4
[46642d30755e1b48]
|
9,494,165 |
BC171440 |
06 - Hybrid ML systems\54 - TensorFlow Lite.mp4
[b21c9937e0abb961]
|
5,051,627 |
0D4DB080 |
06 - Hybrid ML systems\55 - Optimizing for Mobile.mp4
[2add2e9dcfaa7c2e]
|
36,161,575 |
67AA8F93 |
06 - Hybrid ML systems\56 - Summary.mp4
[8791868187ae22e3]
|
16,079,049 |
C6AE999C |
07 - Course Summary\57 - Summary.mp4
[5e661c01f89e6b9]
|
16,823,889 |
D5426928 |
01 - Welcome to the course |
0 |
00000000 |
02 - Architecting Production ML Systems |
0 |
00000000 |
03 - Ingesting data for Cloud-based analytics and ML |
0 |
00000000 |
04 - Designing Adaptable ML systems |
0 |
00000000 |
05 - Designing High-performance ML systems |
0 |
00000000 |
06 - Hybrid ML systems |
0 |
00000000 |
07 - Course Summary |
0 |
00000000 |
|
Total size: |
1,056,092,798 |
|
|