RAR-files |
rebar-sequence.models.for.time.series.and.natural.language.processing.on.google.cloud.rar |
50,000,000 |
C6A7D076 |
rebar-sequence.models.for.time.series.and.natural.language.processing.on.google.cloud.r00 |
50,000,000 |
8399C8D1 |
rebar-sequence.models.for.time.series.and.natural.language.processing.on.google.cloud.r01 |
50,000,000 |
D4D806DF |
rebar-sequence.models.for.time.series.and.natural.language.processing.on.google.cloud.r02 |
50,000,000 |
9278D5C6 |
rebar-sequence.models.for.time.series.and.natural.language.processing.on.google.cloud.r03 |
50,000,000 |
9BA55CA5 |
rebar-sequence.models.for.time.series.and.natural.language.processing.on.google.cloud.r04 |
50,000,000 |
B909F6E9 |
rebar-sequence.models.for.time.series.and.natural.language.processing.on.google.cloud.r05 |
50,000,000 |
84207245 |
rebar-sequence.models.for.time.series.and.natural.language.processing.on.google.cloud.r06 |
50,000,000 |
93B614E0 |
rebar-sequence.models.for.time.series.and.natural.language.processing.on.google.cloud.r07 |
50,000,000 |
3AE4FF4C |
rebar-sequence.models.for.time.series.and.natural.language.processing.on.google.cloud.r08 |
50,000,000 |
76EF1F59 |
rebar-sequence.models.for.time.series.and.natural.language.processing.on.google.cloud.r09 |
50,000,000 |
A912F555 |
rebar-sequence.models.for.time.series.and.natural.language.processing.on.google.cloud.r10 |
50,000,000 |
53684C6A |
rebar-sequence.models.for.time.series.and.natural.language.processing.on.google.cloud.r11 |
50,000,000 |
EB793D58 |
rebar-sequence.models.for.time.series.and.natural.language.processing.on.google.cloud.r12 |
50,000,000 |
DA6C6A01 |
rebar-sequence.models.for.time.series.and.natural.language.processing.on.google.cloud.r13 |
50,000,000 |
4E2F124A |
rebar-sequence.models.for.time.series.and.natural.language.processing.on.google.cloud.r14 |
50,000,000 |
43363EAD |
rebar-sequence.models.for.time.series.and.natural.language.processing.on.google.cloud.r15 |
50,000,000 |
D5A74E32 |
rebar-sequence.models.for.time.series.and.natural.language.processing.on.google.cloud.r16 |
50,000,000 |
0199B2D3 |
rebar-sequence.models.for.time.series.and.natural.language.processing.on.google.cloud.r17 |
50,000,000 |
2ABE9EEE |
rebar-sequence.models.for.time.series.and.natural.language.processing.on.google.cloud.r18 |
50,000,000 |
1A75E289 |
rebar-sequence.models.for.time.series.and.natural.language.processing.on.google.cloud.r19 |
50,000,000 |
614C1BA0 |
rebar-sequence.models.for.time.series.and.natural.language.processing.on.google.cloud.r20 |
50,000,000 |
D295F652 |
rebar-sequence.models.for.time.series.and.natural.language.processing.on.google.cloud.r21 |
50,000,000 |
B8BB3A88 |
rebar-sequence.models.for.time.series.and.natural.language.processing.on.google.cloud.r22 |
50,000,000 |
7F439125 |
rebar-sequence.models.for.time.series.and.natural.language.processing.on.google.cloud.r23 |
50,000,000 |
01ECFBAB |
rebar-sequence.models.for.time.series.and.natural.language.processing.on.google.cloud.r24 |
50,000,000 |
F6ADD0AF |
rebar-sequence.models.for.time.series.and.natural.language.processing.on.google.cloud.r25 |
50,000,000 |
1CDA71B1 |
rebar-sequence.models.for.time.series.and.natural.language.processing.on.google.cloud.r26 |
50,000,000 |
1E2F3B32 |
rebar-sequence.models.for.time.series.and.natural.language.processing.on.google.cloud.r27 |
50,000,000 |
075D26E0 |
rebar-sequence.models.for.time.series.and.natural.language.processing.on.google.cloud.r28 |
50,000,000 |
AF567D32 |
rebar-sequence.models.for.time.series.and.natural.language.processing.on.google.cloud.r29 |
7,060,852 |
BF9183EA |
|
Total size: |
1,507,060,852 |
|
|
Archived
files |
01 - Working with Sequences\01 - Course Introduction.mp4
[f346b8382530823d]
|
13,404,029 |
E0A11C33 |
01 - Working with Sequences\02 - Sequence data and models.mp4
[7e80d7cd7bf1fb24]
|
73,579,258 |
3DBCECD8 |
01 - Working with Sequences\03 - From sequences to inputs.mp4
[fa18cf2792993466]
|
28,079,007 |
EB66C73B |
01 - Working with Sequences\04 - Modeling sequences with linear models.mp4
[2fd3669b3c7d0bb8]
|
23,442,446 |
76F100C7 |
01 - Working with Sequences\05 - Getting started with GCP and Qwiklabs.mp4
[7e409f146cf7f53a]
|
9,109,776 |
C8B030FF |
01 - Working with Sequences\06 - Lab intro -using linear models for sequences.mp4
[832548f05ff88189]
|
5,154,528 |
4B4EAAF7 |
01 - Working with Sequences\07 - Time Series Prediction with a Linear Model.mp4
[fc70dab7f9eff1cd]
|
241,575 |
02CAA3F6 |
01 - Working with Sequences\08 - Lab solution -using linear models for sequences.mp4
[373338fe206b7215]
|
31,133,853 |
D6C4243A |
01 - Working with Sequences\09 - Modeling sequences with DNNs.mp4
[67e0da7e8a34de03]
|
24,758,069 |
E66E7363 |
01 - Working with Sequences\10 - Lab intro -using DNNs for sequences.mp4
[8742c0aec83c2ad]
|
5,040,218 |
7745FD59 |
01 - Working with Sequences\11 - Time Series Prediction with a DNN Model.mp4
[94cdda0e86a032b8]
|
240,190 |
93606088 |
01 - Working with Sequences\12 - Lab solution -using DNNs for sequences.mp4
[1c9ac2cffd264f7a]
|
8,808,878 |
E4EA1E41 |
01 - Working with Sequences\13 - Modeling sequences with CNNs.mp4
[1c34cb7c12a4848f]
|
30,452,068 |
1C58A7E1 |
01 - Working with Sequences\14 - Lab intro -using CNNs for sequences.mp4
[4f181406e135457a]
|
4,947,872 |
9D43F8C4 |
01 - Working with Sequences\15 - Time Series Prediction with a CNN Model.mp4
[c7dcff439c6a6375]
|
239,460 |
BB740836 |
01 - Working with Sequences\16 - Lab solution -using CNNs for sequences.mp4
[10b6ea3e435fd429]
|
12,247,931 |
25ACA3F5 |
01 - Working with Sequences\17 - The variable-length problem.mp4
[a12d6292dd43fe20]
|
64,245,677 |
DAF70571 |
02 - Recurrent Neural Networks\18 - Introducing Recurrent Neural Networks.mp4
[929043505f3a8adb]
|
37,053,474 |
0A0D2DF5 |
02 - Recurrent Neural Networks\19 - How RNNs represent the past.mp4
[577bd298d8169279]
|
43,220,166 |
57A314A4 |
02 - Recurrent Neural Networks\20 - The limits of what RNNs can represent.mp4
[52ae6649a9a007b5]
|
67,009,674 |
442CBBE5 |
02 - Recurrent Neural Networks\21 - The vanishing gradient problem.mp4
[b3ae266b65d6049f]
|
31,419,389 |
D17A0A3E |
03 - Dealing with Longer Sequences\22 - Introduction.mp4
[b49607bda026cf12]
|
9,853,272 |
8AFCD781 |
03 - Dealing with Longer Sequences\23 - LSTMs and GRUs.mp4
[cf4d76517e232568]
|
15,078,947 |
A62DE0F0 |
03 - Dealing with Longer Sequences\24 - RNNs in TensorFlow.mp4
[d326ab3767961c01]
|
8,532,392 |
D96E245B |
03 - Dealing with Longer Sequences\25 - Lab Intro - Time series prediction -end-to-end (rnn).mp4
[9bf89c773e28816d]
|
9,553,041 |
2FBDBBE3 |
03 - Dealing with Longer Sequences\26 - Time Series Prediction with a RNN Model.mp4
[6dcba0c1e74acdb9]
|
243,134 |
3702A047 |
03 - Dealing with Longer Sequences\27 - Lab Solution - Time series prediction -end-to-end (rnn).mp4
[e3bbf271f2014b63]
|
39,151,530 |
CAA6B3BB |
03 - Dealing with Longer Sequences\28 - Deep RNNs.mp4
[e8697a270b3b2ba]
|
5,118,230 |
B10EEC97 |
03 - Dealing with Longer Sequences\29 - Lab Intro - Time series prediction -end-to-end (rnn2).mp4
[5972e6e976b35836]
|
5,410,876 |
A880CF2E |
03 - Dealing with Longer Sequences\30 - Time Series Prediction with a Two-Layer RNN Model.mp4
[2701bec96593d92f]
|
250,026 |
29E9C7DF |
03 - Dealing with Longer Sequences\31 - Lab Solution - Time series prediction -end-to-end (rnn2).mp4
[cd9c1834a01b23ea]
|
22,448,918 |
EC0D5FF2 |
03 - Dealing with Longer Sequences\32 - Improving our Loss Function.mp4
[ddfad941b19bc418]
|
6,694,422 |
8EBE7093 |
03 - Dealing with Longer Sequences\33 - Demo - Time series prediction -end-to-end (rnnN).mp4
[d9673111d3753d38]
|
12,497,121 |
4C513CA1 |
03 - Dealing with Longer Sequences\34 - Working with Real Data.mp4
[690384f78b976031]
|
80,583,771 |
6713BB2E |
03 - Dealing with Longer Sequences\35 - Lab Intro - Time Series Prediction - Temperature from Weather Data.mp4
[7c79e6cf7169a659]
|
10,502,703 |
075B8781 |
03 - Dealing with Longer Sequences\36 - An RNN Model for Temperature Data.mp4
[cef679e23ac64233]
|
239,357 |
77660771 |
03 - Dealing with Longer Sequences\37 - Lab Solution - Time Series Prediction-Temperature from Weather Data.mp4
[278b8a1f76f9f0b2]
|
52,683,507 |
CA235368 |
03 - Dealing with Longer Sequences\38 - Summary.mp4
[689d7e95f6ab1a54]
|
9,722,783 |
3241EAA8 |
04 - Text Classification\39 - Working with Text.mp4
[5cb330b79c648b59]
|
13,490,184 |
C6AEF02E |
04 - Text Classification\40 - Text Classification.mp4
[ca21ed159a0267ea]
|
30,524,564 |
02FE0607 |
04 - Text Classification\41 - Selecting a Model.mp4
[64929aa0e6de68e8]
|
12,271,743 |
2DC0A64C |
04 - Text Classification\42 - Lab Intro - Text Classification.mp4
[871e82582950da17]
|
9,180,930 |
DBDE073D |
04 - Text Classification\43 - Text Classification using TensorFlow_Keras on AI Platform.mp4
[f87b0e5ef0488b31]
|
251,730 |
EDBD74DE |
04 - Text Classification\44 - Lab Solution - Text Classification.mp4
[200b0a2f7df0f46b]
|
43,206,511 |
013E375C |
04 - Text Classification\45 - Python vs Native TensorFlow.mp4
[b0bedcc848e7a5f4]
|
14,636,266 |
34098E30 |
04 - Text Classification\46 - Demo -Text Classification with Native TensorFlow.mp4
[1bef6f97bbd41742]
|
18,013,196 |
ED240B2A |
04 - Text Classification\47 - Summary.mp4
[1dea10154bef836b]
|
12,687,670 |
A2670697 |
05 - Reusable Embeddings\48 - Historical methods of making word embeddings.mp4
[ba14f39ba0cf73dd]
|
79,396,691 |
64F91D42 |
05 - Reusable Embeddings\49 - Modern methods of making word embeddings.mp4
[c5ca7af71bb682d7]
|
100,037,118 |
5E391F08 |
05 - Reusable Embeddings\50 - Introducing TensorFlow Hub.mp4
[95f197e51ec2d546]
|
29,522,468 |
0E778894 |
05 - Reusable Embeddings\51 - Lab Intro - Evaluating a pre-trained embedding from TensorFlow Hub.mp4
[11b9bc2dce66ff55]
|
7,725,918 |
DD011D6F |
05 - Reusable Embeddings\52 - Using pre-trained embeddings with TensorFlow Hub.mp4
[a6dcdb3cd1ec95da]
|
249,997 |
1D101C60 |
05 - Reusable Embeddings\53 - Lab Solution - TensorFlow Hub.mp4
[485caf4904cb6800]
|
40,180,094 |
76C8E542 |
05 - Reusable Embeddings\54 - Using TensorFlow Hub within an estimator.mp4
[2fbc6284c96ecbda]
|
18,538,063 |
EF511CE5 |
06 - Encoder-Decoder Models\55 - Introducing Encoder-Decoder Networks.mp4
[d7a7509858cefb76]
|
19,359,917 |
CE85A13F |
06 - Encoder-Decoder Models\56 - Attention Networks.mp4
[74450c6afd14fe04]
|
6,114,816 |
F5C3B1B0 |
06 - Encoder-Decoder Models\57 - Training Encoder-Decoder Models with TensorFlow.mp4
[c7d25a4a3519c0b2]
|
14,870,924 |
38AD7149 |
06 - Encoder-Decoder Models\58 - Introducing Tensor2Tensor.mp4
[eff4630b98e875c8]
|
32,226,242 |
CCAE30E0 |
06 - Encoder-Decoder Models\59 - Lab Intro - Cloud poetry -Training custom text models on Cloud ML Engine.mp4
[9a2a78dfc195f33f]
|
4,901,901 |
5D657D1F |
06 - Encoder-Decoder Models\60 - Text generation using tensor2tensor on Cloud AI Platform.mp4
[603bc5ec3c480808]
|
250,882 |
AF912C6A |
06 - Encoder-Decoder Models\61 - Lab Solution - Cloud poetry -Training custom text models on Cloud ML Engine.mp4
[ef7782e266b9b099]
|
91,175,100 |
7227FEF6 |
06 - Encoder-Decoder Models\62 - AutoML Translation.mp4
[988adc567ba56a16]
|
8,562,601 |
9DE08FA2 |
06 - Encoder-Decoder Models\63 - Dialogflow.mp4
[f6961fae70f9b82c]
|
28,307,181 |
3912FDA2 |
06 - Encoder-Decoder Models\64 - Lab Intro - Introducing Dialogflow.mp4
[b8fb226d3ad87be]
|
3,612,404 |
E7FBF21B |
06 - Encoder-Decoder Models\65 - Getting Started with Dialogflow.mp4
[f478d117891dba1]
|
240,124 |
0FA082F5 |
06 - Encoder-Decoder Models\66 - Lab Solution - Dialogflow.mp4
[db3a32f24f8f8822]
|
20,427,935 |
C1D10A7C |
07 - Summary\67 - Summary.mp4
[d97e987d00074143]
|
34,399,626 |
38296E69 |
sequence-models-time-series-natural-language-processing.zip |
10,294,506 |
C13731F9 |
01 - Working with Sequences |
0 |
00000000 |
02 - Recurrent Neural Networks |
0 |
00000000 |
03 - Dealing with Longer Sequences |
0 |
00000000 |
04 - Text Classification |
0 |
00000000 |
05 - Reusable Embeddings |
0 |
00000000 |
06 - Encoder-Decoder Models |
0 |
00000000 |
07 - Summary |
0 |
00000000 |
|
Total size: |
1,507,048,870 |
|
|