Use pyReScene to create SRRs from your collection and upload them here.
  • Anonymous
  • 2020-04-27 17:01:08
  • Unknown

RELEASE >

ReScene version pyReScene Auto 0.7 REBAR File size CRC
Download
23,207
Stored files
235 DBD73350
3,100 7CAE1AF0
RAR-files
rebar-sequence.models.for.time.series.and.natural.language.processing.on.google.cloud.rar 50,000,000 C6A7D076
rebar-sequence.models.for.time.series.and.natural.language.processing.on.google.cloud.r00 50,000,000 8399C8D1
rebar-sequence.models.for.time.series.and.natural.language.processing.on.google.cloud.r01 50,000,000 D4D806DF
rebar-sequence.models.for.time.series.and.natural.language.processing.on.google.cloud.r02 50,000,000 9278D5C6
rebar-sequence.models.for.time.series.and.natural.language.processing.on.google.cloud.r03 50,000,000 9BA55CA5
rebar-sequence.models.for.time.series.and.natural.language.processing.on.google.cloud.r04 50,000,000 B909F6E9
rebar-sequence.models.for.time.series.and.natural.language.processing.on.google.cloud.r05 50,000,000 84207245
rebar-sequence.models.for.time.series.and.natural.language.processing.on.google.cloud.r06 50,000,000 93B614E0
rebar-sequence.models.for.time.series.and.natural.language.processing.on.google.cloud.r07 50,000,000 3AE4FF4C
rebar-sequence.models.for.time.series.and.natural.language.processing.on.google.cloud.r08 50,000,000 76EF1F59
rebar-sequence.models.for.time.series.and.natural.language.processing.on.google.cloud.r09 50,000,000 A912F555
rebar-sequence.models.for.time.series.and.natural.language.processing.on.google.cloud.r10 50,000,000 53684C6A
rebar-sequence.models.for.time.series.and.natural.language.processing.on.google.cloud.r11 50,000,000 EB793D58
rebar-sequence.models.for.time.series.and.natural.language.processing.on.google.cloud.r12 50,000,000 DA6C6A01
rebar-sequence.models.for.time.series.and.natural.language.processing.on.google.cloud.r13 50,000,000 4E2F124A
rebar-sequence.models.for.time.series.and.natural.language.processing.on.google.cloud.r14 50,000,000 43363EAD
rebar-sequence.models.for.time.series.and.natural.language.processing.on.google.cloud.r15 50,000,000 D5A74E32
rebar-sequence.models.for.time.series.and.natural.language.processing.on.google.cloud.r16 50,000,000 0199B2D3
rebar-sequence.models.for.time.series.and.natural.language.processing.on.google.cloud.r17 50,000,000 2ABE9EEE
rebar-sequence.models.for.time.series.and.natural.language.processing.on.google.cloud.r18 50,000,000 1A75E289
rebar-sequence.models.for.time.series.and.natural.language.processing.on.google.cloud.r19 50,000,000 614C1BA0
rebar-sequence.models.for.time.series.and.natural.language.processing.on.google.cloud.r20 50,000,000 D295F652
rebar-sequence.models.for.time.series.and.natural.language.processing.on.google.cloud.r21 50,000,000 B8BB3A88
rebar-sequence.models.for.time.series.and.natural.language.processing.on.google.cloud.r22 50,000,000 7F439125
rebar-sequence.models.for.time.series.and.natural.language.processing.on.google.cloud.r23 50,000,000 01ECFBAB
rebar-sequence.models.for.time.series.and.natural.language.processing.on.google.cloud.r24 50,000,000 F6ADD0AF
rebar-sequence.models.for.time.series.and.natural.language.processing.on.google.cloud.r25 50,000,000 1CDA71B1
rebar-sequence.models.for.time.series.and.natural.language.processing.on.google.cloud.r26 50,000,000 1E2F3B32
rebar-sequence.models.for.time.series.and.natural.language.processing.on.google.cloud.r27 50,000,000 075D26E0
rebar-sequence.models.for.time.series.and.natural.language.processing.on.google.cloud.r28 50,000,000 AF567D32
rebar-sequence.models.for.time.series.and.natural.language.processing.on.google.cloud.r29 7,060,852 BF9183EA

Total size: 1,507,060,852
Archived files
01 - Working with Sequences\01 - Course Introduction.mp4 [f346b8382530823d] 13,404,029 E0A11C33
01 - Working with Sequences\02 - Sequence data and models.mp4 [7e80d7cd7bf1fb24] 73,579,258 3DBCECD8
01 - Working with Sequences\03 - From sequences to inputs.mp4 [fa18cf2792993466] 28,079,007 EB66C73B
01 - Working with Sequences\04 - Modeling sequences with linear models.mp4 [2fd3669b3c7d0bb8] 23,442,446 76F100C7
01 - Working with Sequences\05 - Getting started with GCP and Qwiklabs.mp4 [7e409f146cf7f53a] 9,109,776 C8B030FF
01 - Working with Sequences\06 - Lab intro -using linear models for sequences.mp4 [832548f05ff88189] 5,154,528 4B4EAAF7
01 - Working with Sequences\07 - Time Series Prediction with a Linear Model.mp4 [fc70dab7f9eff1cd] 241,575 02CAA3F6
01 - Working with Sequences\08 - Lab solution -using linear models for sequences.mp4 [373338fe206b7215] 31,133,853 D6C4243A
01 - Working with Sequences\09 - Modeling sequences with DNNs.mp4 [67e0da7e8a34de03] 24,758,069 E66E7363
01 - Working with Sequences\10 - Lab intro -using DNNs for sequences.mp4 [8742c0aec83c2ad] 5,040,218 7745FD59
01 - Working with Sequences\11 - Time Series Prediction with a DNN Model.mp4 [94cdda0e86a032b8] 240,190 93606088
01 - Working with Sequences\12 - Lab solution -using DNNs for sequences.mp4 [1c9ac2cffd264f7a] 8,808,878 E4EA1E41
01 - Working with Sequences\13 - Modeling sequences with CNNs.mp4 [1c34cb7c12a4848f] 30,452,068 1C58A7E1
01 - Working with Sequences\14 - Lab intro -using CNNs for sequences.mp4 [4f181406e135457a] 4,947,872 9D43F8C4
01 - Working with Sequences\15 - Time Series Prediction with a CNN Model.mp4 [c7dcff439c6a6375] 239,460 BB740836
01 - Working with Sequences\16 - Lab solution -using CNNs for sequences.mp4 [10b6ea3e435fd429] 12,247,931 25ACA3F5
01 - Working with Sequences\17 - The variable-length problem.mp4 [a12d6292dd43fe20] 64,245,677 DAF70571
02 - Recurrent Neural Networks\18 - Introducing Recurrent Neural Networks.mp4 [929043505f3a8adb] 37,053,474 0A0D2DF5
02 - Recurrent Neural Networks\19 - How RNNs represent the past.mp4 [577bd298d8169279] 43,220,166 57A314A4
02 - Recurrent Neural Networks\20 - The limits of what RNNs can represent.mp4 [52ae6649a9a007b5] 67,009,674 442CBBE5
02 - Recurrent Neural Networks\21 - The vanishing gradient problem.mp4 [b3ae266b65d6049f] 31,419,389 D17A0A3E
03 - Dealing with Longer Sequences\22 - Introduction.mp4 [b49607bda026cf12] 9,853,272 8AFCD781
03 - Dealing with Longer Sequences\23 - LSTMs and GRUs.mp4 [cf4d76517e232568] 15,078,947 A62DE0F0
03 - Dealing with Longer Sequences\24 - RNNs in TensorFlow.mp4 [d326ab3767961c01] 8,532,392 D96E245B
03 - Dealing with Longer Sequences\25 - Lab Intro - Time series prediction -end-to-end (rnn).mp4 [9bf89c773e28816d] 9,553,041 2FBDBBE3
03 - Dealing with Longer Sequences\26 - Time Series Prediction with a RNN Model.mp4 [6dcba0c1e74acdb9] 243,134 3702A047
03 - Dealing with Longer Sequences\27 - Lab Solution - Time series prediction -end-to-end (rnn).mp4 [e3bbf271f2014b63] 39,151,530 CAA6B3BB
03 - Dealing with Longer Sequences\28 - Deep RNNs.mp4 [e8697a270b3b2ba] 5,118,230 B10EEC97
03 - Dealing with Longer Sequences\29 - Lab Intro - Time series prediction -end-to-end (rnn2).mp4 [5972e6e976b35836] 5,410,876 A880CF2E
03 - Dealing with Longer Sequences\30 - Time Series Prediction with a Two-Layer RNN Model.mp4 [2701bec96593d92f] 250,026 29E9C7DF
03 - Dealing with Longer Sequences\31 - Lab Solution - Time series prediction -end-to-end (rnn2).mp4 [cd9c1834a01b23ea] 22,448,918 EC0D5FF2
03 - Dealing with Longer Sequences\32 - Improving our Loss Function.mp4 [ddfad941b19bc418] 6,694,422 8EBE7093
03 - Dealing with Longer Sequences\33 - Demo - Time series prediction -end-to-end (rnnN).mp4 [d9673111d3753d38] 12,497,121 4C513CA1
03 - Dealing with Longer Sequences\34 - Working with Real Data.mp4 [690384f78b976031] 80,583,771 6713BB2E
03 - Dealing with Longer Sequences\35 - Lab Intro - Time Series Prediction - Temperature from Weather Data.mp4 [7c79e6cf7169a659] 10,502,703 075B8781
03 - Dealing with Longer Sequences\36 - An RNN Model for Temperature Data.mp4 [cef679e23ac64233] 239,357 77660771
03 - Dealing with Longer Sequences\37 - Lab Solution - Time Series Prediction-Temperature from Weather Data.mp4 [278b8a1f76f9f0b2] 52,683,507 CA235368
03 - Dealing with Longer Sequences\38 - Summary.mp4 [689d7e95f6ab1a54] 9,722,783 3241EAA8
04 - Text Classification\39 - Working with Text.mp4 [5cb330b79c648b59] 13,490,184 C6AEF02E
04 - Text Classification\40 - Text Classification.mp4 [ca21ed159a0267ea] 30,524,564 02FE0607
04 - Text Classification\41 - Selecting a Model.mp4 [64929aa0e6de68e8] 12,271,743 2DC0A64C
04 - Text Classification\42 - Lab Intro - Text Classification.mp4 [871e82582950da17] 9,180,930 DBDE073D
04 - Text Classification\43 - Text Classification using TensorFlow_Keras on AI Platform.mp4 [f87b0e5ef0488b31] 251,730 EDBD74DE
04 - Text Classification\44 - Lab Solution - Text Classification.mp4 [200b0a2f7df0f46b] 43,206,511 013E375C
04 - Text Classification\45 - Python vs Native TensorFlow.mp4 [b0bedcc848e7a5f4] 14,636,266 34098E30
04 - Text Classification\46 - Demo -Text Classification with Native TensorFlow.mp4 [1bef6f97bbd41742] 18,013,196 ED240B2A
04 - Text Classification\47 - Summary.mp4 [1dea10154bef836b] 12,687,670 A2670697
05 - Reusable Embeddings\48 - Historical methods of making word embeddings.mp4 [ba14f39ba0cf73dd] 79,396,691 64F91D42
05 - Reusable Embeddings\49 - Modern methods of making word embeddings.mp4 [c5ca7af71bb682d7] 100,037,118 5E391F08
05 - Reusable Embeddings\50 - Introducing TensorFlow Hub.mp4 [95f197e51ec2d546] 29,522,468 0E778894
05 - Reusable Embeddings\51 - Lab Intro - Evaluating a pre-trained embedding from TensorFlow Hub.mp4 [11b9bc2dce66ff55] 7,725,918 DD011D6F
05 - Reusable Embeddings\52 - Using pre-trained embeddings with TensorFlow Hub.mp4 [a6dcdb3cd1ec95da] 249,997 1D101C60
05 - Reusable Embeddings\53 - Lab Solution - TensorFlow Hub.mp4 [485caf4904cb6800] 40,180,094 76C8E542
05 - Reusable Embeddings\54 - Using TensorFlow Hub within an estimator.mp4 [2fbc6284c96ecbda] 18,538,063 EF511CE5
06 - Encoder-Decoder Models\55 - Introducing Encoder-Decoder Networks.mp4 [d7a7509858cefb76] 19,359,917 CE85A13F
06 - Encoder-Decoder Models\56 - Attention Networks.mp4 [74450c6afd14fe04] 6,114,816 F5C3B1B0
06 - Encoder-Decoder Models\57 - Training Encoder-Decoder Models with TensorFlow.mp4 [c7d25a4a3519c0b2] 14,870,924 38AD7149
06 - Encoder-Decoder Models\58 - Introducing Tensor2Tensor.mp4 [eff4630b98e875c8] 32,226,242 CCAE30E0
06 - Encoder-Decoder Models\59 - Lab Intro - Cloud poetry -Training custom text models on Cloud ML Engine.mp4 [9a2a78dfc195f33f] 4,901,901 5D657D1F
06 - Encoder-Decoder Models\60 - Text generation using tensor2tensor on Cloud AI Platform.mp4 [603bc5ec3c480808] 250,882 AF912C6A
06 - Encoder-Decoder Models\61 - Lab Solution - Cloud poetry -Training custom text models on Cloud ML Engine.mp4 [ef7782e266b9b099] 91,175,100 7227FEF6
06 - Encoder-Decoder Models\62 - AutoML Translation.mp4 [988adc567ba56a16] 8,562,601 9DE08FA2
06 - Encoder-Decoder Models\63 - Dialogflow.mp4 [f6961fae70f9b82c] 28,307,181 3912FDA2
06 - Encoder-Decoder Models\64 - Lab Intro - Introducing Dialogflow.mp4 [b8fb226d3ad87be] 3,612,404 E7FBF21B
06 - Encoder-Decoder Models\65 - Getting Started with Dialogflow.mp4 [f478d117891dba1] 240,124 0FA082F5
06 - Encoder-Decoder Models\66 - Lab Solution - Dialogflow.mp4 [db3a32f24f8f8822] 20,427,935 C1D10A7C
07 - Summary\67 - Summary.mp4 [d97e987d00074143] 34,399,626 38296E69
sequence-models-time-series-natural-language-processing.zip 10,294,506 C13731F9
01 - Working with Sequences 0 00000000
02 - Recurrent Neural Networks 0 00000000
03 - Dealing with Longer Sequences 0 00000000
04 - Text Classification 0 00000000
05 - Reusable Embeddings 0 00000000
06 - Encoder-Decoder Models 0 00000000
07 - Summary 0 00000000

Total size: 1,507,048,870
RAR Recovery
Not Present
Labels UNKNOWN