RAR-files |
ilearn-2022mlatz5mlp.rar |
350,000,000 |
0278FD94 |
ilearn-2022mlatz5mlp.r00 |
350,000,000 |
420392B7 |
ilearn-2022mlatz5mlp.r01 |
350,000,000 |
C981F9F4 |
ilearn-2022mlatz5mlp.r02 |
350,000,000 |
29B43C5F |
ilearn-2022mlatz5mlp.r03 |
350,000,000 |
BBD61579 |
ilearn-2022mlatz5mlp.r04 |
350,000,000 |
0942AE94 |
ilearn-2022mlatz5mlp.r05 |
350,000,000 |
FFAD1E01 |
ilearn-2022mlatz5mlp.r06 |
350,000,000 |
E3CAC499 |
ilearn-2022mlatz5mlp.r07 |
350,000,000 |
6C990753 |
ilearn-2022mlatz5mlp.r08 |
350,000,000 |
9D89BA8C |
ilearn-2022mlatz5mlp.r09 |
350,000,000 |
3C2B6B9C |
ilearn-2022mlatz5mlp.r10 |
350,000,000 |
540E30EC |
ilearn-2022mlatz5mlp.r11 |
350,000,000 |
2930B537 |
ilearn-2022mlatz5mlp.r12 |
350,000,000 |
D9089C58 |
ilearn-2022mlatz5mlp.r13 |
350,000,000 |
318D032E |
ilearn-2022mlatz5mlp.r14 |
350,000,000 |
93ADBF10 |
ilearn-2022mlatz5mlp.r15 |
350,000,000 |
1FF710F7 |
ilearn-2022mlatz5mlp.r16 |
350,000,000 |
6D60B341 |
ilearn-2022mlatz5mlp.r17 |
350,000,000 |
2F1B0B33 |
ilearn-2022mlatz5mlp.r18 |
350,000,000 |
A31C3473 |
ilearn-2022mlatz5mlp.r19 |
350,000,000 |
9E80CF2C |
ilearn-2022mlatz5mlp.r20 |
350,000,000 |
AF6EAD50 |
ilearn-2022mlatz5mlp.r21 |
350,000,000 |
A9ED7146 |
ilearn-2022mlatz5mlp.r22 |
350,000,000 |
1F33289A |
ilearn-2022mlatz5mlp.r23 |
350,000,000 |
A07AD0CF |
ilearn-2022mlatz5mlp.r24 |
350,000,000 |
4613BE3E |
ilearn-2022mlatz5mlp.r25 |
350,000,000 |
D2AD1351 |
ilearn-2022mlatz5mlp.r26 |
350,000,000 |
6ED049A1 |
ilearn-2022mlatz5mlp.r27 |
350,000,000 |
F5D247CB |
ilearn-2022mlatz5mlp.r28 |
350,000,000 |
04B5294C |
ilearn-2022mlatz5mlp.r29 |
350,000,000 |
664FAF43 |
ilearn-2022mlatz5mlp.r30 |
350,000,000 |
7679FBAC |
ilearn-2022mlatz5mlp.r31 |
350,000,000 |
8210F7D9 |
ilearn-2022mlatz5mlp.r32 |
350,000,000 |
17F1E830 |
ilearn-2022mlatz5mlp.r33 |
350,000,000 |
4DB91BBB |
ilearn-2022mlatz5mlp.r34 |
350,000,000 |
1F900369 |
ilearn-2022mlatz5mlp.r35 |
350,000,000 |
7FBD935F |
ilearn-2022mlatz5mlp.r36 |
350,000,000 |
64445DB7 |
ilearn-2022mlatz5mlp.r37 |
350,000,000 |
3484B406 |
ilearn-2022mlatz5mlp.r38 |
350,000,000 |
B082EE7F |
ilearn-2022mlatz5mlp.r39 |
350,000,000 |
3C23F4C4 |
ilearn-2022mlatz5mlp.r40 |
350,000,000 |
870D82DE |
ilearn-2022mlatz5mlp.r41 |
350,000,000 |
BD0B5321 |
ilearn-2022mlatz5mlp.r42 |
350,000,000 |
50471E93 |
ilearn-2022mlatz5mlp.r43 |
350,000,000 |
1317F3DA |
ilearn-2022mlatz5mlp.r44 |
350,000,000 |
799F5125 |
ilearn-2022mlatz5mlp.r45 |
350,000,000 |
181BB969 |
ilearn-2022mlatz5mlp.r46 |
350,000,000 |
7931B94E |
ilearn-2022mlatz5mlp.r47 |
350,000,000 |
A737CFF6 |
ilearn-2022mlatz5mlp.r48 |
350,000,000 |
D3CE163C |
ilearn-2022mlatz5mlp.r49 |
350,000,000 |
3A918E85 |
ilearn-2022mlatz5mlp.r50 |
350,000,000 |
F7BC49B9 |
ilearn-2022mlatz5mlp.r51 |
350,000,000 |
DB2E724F |
ilearn-2022mlatz5mlp.r52 |
350,000,000 |
33266D64 |
ilearn-2022mlatz5mlp.r53 |
350,000,000 |
DD4E134C |
ilearn-2022mlatz5mlp.r54 |
350,000,000 |
5EBD390B |
ilearn-2022mlatz5mlp.r55 |
350,000,000 |
FD9BF10A |
ilearn-2022mlatz5mlp.r56 |
350,000,000 |
60868FEB |
ilearn-2022mlatz5mlp.r57 |
350,000,000 |
53F66818 |
ilearn-2022mlatz5mlp.r58 |
350,000,000 |
E1EA8F44 |
ilearn-2022mlatz5mlp.r59 |
350,000,000 |
17C83716 |
ilearn-2022mlatz5mlp.r60 |
350,000,000 |
C736947F |
ilearn-2022mlatz5mlp.r61 |
350,000,000 |
AD391336 |
ilearn-2022mlatz5mlp.r62 |
350,000,000 |
44DF9BED |
ilearn-2022mlatz5mlp.r63 |
350,000,000 |
95908DC4 |
ilearn-2022mlatz5mlp.r64 |
350,000,000 |
AA6AFDFA |
ilearn-2022mlatz5mlp.r65 |
350,000,000 |
4A357E64 |
ilearn-2022mlatz5mlp.r66 |
350,000,000 |
9B21356D |
ilearn-2022mlatz5mlp.r67 |
167,178,821 |
9C4AC695 |
|
Total size: |
23,967,178,821 |
|
|
Archived
files |
7. Q and A.mp4
[8e942175fab8a6a3]
|
31,257,561 |
775894E2 |
8. Quiz Solution.mp4
[4e8b1edc6b24491]
|
48,780,532 |
4880F677 |
9. Thanks for your support!!.mp4
[a7d351a39a06ef8e]
|
26,209,371 |
43EE3001 |
10. Arithmetic and Assignment Operators.mp4
[84b81775d2504e82]
|
81,828,716 |
8EB2A0A3 |
11. Comparison, Logical, and Bitwise Operators.mp4
[3022752c279a274d]
|
65,439,050 |
8F5D0501 |
12. Identity and Membership Operators.mp4
[74fbb62cc9fe6df1]
|
41,126,865 |
C15398CC |
13. Quiz Solution.mp4
[43ae65d4d6b0f966]
|
35,875,844 |
F0A916C1 |
14. String Formatting.mp4
[10bf092c4f22e101]
|
53,845,267 |
035F9D5A |
15. String Methods.mp4
[427d8cc62365fcb3]
|
45,390,299 |
1004E212 |
16. User Input.mp4
[6b9c010095c2b344]
|
43,032,519 |
603CBD37 |
17. Quiz Solution.mp4
[dea98561cdb9d087]
|
55,685,505 |
7A4FD2F9 |
18. If, elif, and else.mp4
[a4cd8c78dc5a464]
|
69,106,291 |
FDDC0CEA |
19. For and While.mp4
[5fbf7c46bbdb954]
|
55,644,563 |
7E92D879 |
20. Break and Continue.mp4
[568fbd939cf15d4]
|
42,701,676 |
F678F0DF |
21. Quiz Solution.mp4
[3d2013f9b5db7b16]
|
51,424,348 |
EA46E545 |
22. Differences between Lists and Tuples.mp4
[55aef82094db486]
|
51,018,793 |
9FEBA9AE |
23. Operations on Lists.mp4
[2c56e6bd41e5bc96]
|
46,555,237 |
A2D704E3 |
24. Operations on Tuples.mp4
[5fa8c6243c4a6195]
|
28,769,309 |
C4B7930A |
25. Quiz Solution.mp4
[f14442dee0495cdc]
|
38,892,134 |
B1842E69 |
26. Introduction to Dictionaries.mp4
[e807e987c7fb6851]
|
70,077,260 |
00B07134 |
27. Operations on Dictionaries.mp4
[3eaca8c495547d2d]
|
39,304,725 |
165FE39C |
28. Nested Dictionaries.mp4
[e8e1a85ddfc2d5e5]
|
63,490,109 |
8161B25A |
29. Introduction to Sets.mp4
[12aaffddac9b1c19]
|
79,157,791 |
7F0B3100 |
30. Set Operations.mp4
[a7062f774dd8c2fe]
|
61,433,313 |
A91C308F |
31. Quiz Solution.mp4
[24c3923508c01d9f]
|
40,128,996 |
3D0644C4 |
32. Introduction to Stacks and Queues.mp4
[17a1f68da98094b8]
|
51,059,785 |
7FD90ECC |
33. Implementing Stacks and Queues using Lists.mp4
[ea471abbe4020d05]
|
38,271,361 |
8557EC6C |
34. Implementing Stacks and Queues using Deque.mp4
[95e6d2113005a68c]
|
43,616,313 |
6C01B86D |
35. Quiz Solution.mp4
[dfc450bba264665a]
|
41,427,770 |
C432688D |
36. Time Complexity.mp4
[7c0ca46724292bbc]
|
125,967,036 |
F6F5AC2F |
37. Linear Search.mp4
[b7c57204a9ff50b0]
|
100,158,630 |
FA0A1924 |
38. Binary Search.mp4
[34f1268d950d6bb5]
|
114,863,291 |
EFB1884C |
39. Bubble Sort.mp4
[a330f1b6a3baccde]
|
79,215,620 |
17A4100E |
40. Insertion and Selection Sort.mp4
[d87536185258bdff]
|
125,828,520 |
F81ADB76 |
41. Merge Sort.mp4
[b7050d20b796d152]
|
121,042,999 |
A4CE57C7 |
42. Quiz Solution.mp4
[4b904564614db72b]
|
76,794,784 |
73FD28E9 |
43. Introduction to Functions.mp4
[ac694cfae882f1d5]
|
42,176,508 |
4C23FDCA |
44. Default Parameters in Functions.mp4
[d5133b280b5cae2e]
|
56,578,183 |
6B42129C |
45. Positional Arguments.mp4
[9c672d39aaac024b]
|
33,666,387 |
EDBCC505 |
46. Keyword Arguments.mp4
[7eece44546b369a3]
|
37,998,461 |
DAB901C9 |
47. Python Modules.mp4
[698907018f9c9dfa]
|
44,774,533 |
2406F9DB |
48. Quiz Solution.mp4
[66e06500998c48a1]
|
50,011,626 |
574A6E41 |
49. Lambda Functions.mp4
[d266fe176cee9dad]
|
55,724,590 |
3EBAB1F2 |
50. Filter, Map, and Zip Functions.mp4
[b19b94729e89db12]
|
83,749,371 |
69F7DCC1 |
51. List, set, and Dictionary Comprehensions.mp4
[8e62854e8a2efb57]
|
57,233,784 |
10547D1C |
52. Quiz Solution.mp4
[3b1f29924cae49e4]
|
42,211,436 |
B7C8C6B5 |
53. Introduction to Aggregate Functions.mp4
[24ff58c98336cfca]
|
32,117,630 |
57F22C6A |
54. Introduction to Analytical Functions.mp4
[da2b035d96b85d9d]
|
36,367,172 |
2B9F4CF1 |
55. Quiz Solution.mp4
[fc381a3d7ae74c7b]
|
40,049,205 |
166D3316 |
56. Solving the Factorial Problem using Recursion.mp4
[5194ceb1a0e1299b]
|
58,073,802 |
89E54D5B |
57. Solving the Fibonacci Problem using Recursion.mp4
[b870fc770060d7ef]
|
65,720,636 |
1A84849F |
58. Quiz Solution.mp4
[ba81c01fb7238162]
|
39,913,082 |
7A273A78 |
59. Introduction to Classes and Objects.mp4
[aea7d6e93222b1e1]
|
41,452,793 |
DF658F70 |
60. Inheritance.mp4
[ebdca6f51addaf9a]
|
34,069,030 |
97A4A6B8 |
61. Encapsulation.mp4
[871e6204734c41a7]
|
65,224,050 |
6D1766E9 |
62. Polymorphism.mp4
[1866060eaef76721]
|
48,499,382 |
986155DE |
63. Quiz Solution.mp4
[544b211cf8760923]
|
42,431,336 |
529656CE |
64. Introduction to datetime.mp4
[236df441fd28896c]
|
39,312,160 |
2C64CEE6 |
65. The date and time class.mp4
[7297c9c5b92ed605]
|
35,180,613 |
EF159554 |
66. The datetime class.mp4
[32f8bfd31f1daef8]
|
23,666,507 |
98AF8B8A |
67. The timedelta class.mp4
[53d8a45271aa1ca6]
|
20,301,544 |
6CFA662B |
68. Quiz Solution.mp4
[720cfb3ac1ed5f83]
|
46,215,361 |
A89305FF |
69. Meta Characters for Regular Expressions.mp4
[67799af0f78b61e5]
|
77,622,740 |
C7597748 |
70. Built-in Functions for Regular Expressions.mp4
[d4a0291e122e0e81]
|
39,397,414 |
B48F031C |
71. Special Characters for Regular Expressions.mp4
[39cf9d6194a06c]
|
42,908,506 |
1AE68303 |
72. Sets for Regular Expressions.mp4
[3ba428735d7fc723]
|
58,861,384 |
44D1C6ED |
73. Quiz Solution.mp4
[54c7445094026f0e]
|
34,414,006 |
A190209C |
74. Array Creation using Numpy.mp4
[332510b5fb12fe50]
|
53,383,707 |
EB8EEBAB |
75. Mathematical Operations using Numpy.mp4
[db8ed967d291a1e4]
|
38,209,838 |
97C86CB8 |
76. Built-in Functions in Numpy.mp4
[807fa6fc8989da91]
|
41,929,973 |
0C7EB070 |
77. Quiz Solution.mp4
[47bc87fa8f6e051d]
|
60,400,939 |
D89DE99E |
78. Reading Datasets using Pandas.mp4
[2bfbfeb58445740b]
|
68,946,606 |
5AC029D6 |
79. Plotting Data in Pandas.mp4
[326a7817ee68eefd]
|
37,480,556 |
64970E13 |
80. Indexing, Selecting, and Filtering Data using Pandas.mp4
[4a4f27ddc9e7436]
|
72,268,554 |
20F3B41B |
81. Merging and Concatenating DataFrames.mp4
[a97de41a9bf7a357]
|
80,294,053 |
2C33A7C7 |
82. Lambda, Map, and Apply Functions.mp4
[35439b11334c98ce]
|
39,009,360 |
AA9CB7E4 |
83. Quiz Solution.mp4
[fa6a915961f184e7]
|
57,366,846 |
BC4B2C12 |
84. Causes and Impact of Missing Values.mp4
[9352cb4398c1c521]
|
67,501,391 |
9E9203C7 |
85. Types of Missing Values.mp4
[a9352777a3a1e3e5]
|
64,819,501 |
BAA98DC1 |
86. When should we delete the Missing values.mp4
[30305e792ae344c5]
|
83,482,840 |
2E5EA483 |
87. Imputing the Missing Values using the Business Logic.mp4
[3873370a56c5fe74]
|
77,503,805 |
8EAABCED |
88. Imputing Missing Values using MeanMedianMode.mp4
[d3fd63ad187e33e9]
|
58,674,759 |
1ACC5910 |
89. Imputing Missing Values in a real-time scenario.mp4
[903e1ef20aec93a8]
|
86,563,755 |
77EABA5D |
90. Quiz Solution.mp4
[a53544b493da3520]
|
51,548,936 |
31106C8F |
91. How Outliers can be harmful for Machine Learning Models.mp4
[3d637a822439d55b]
|
72,389,541 |
7C11C602 |
92. Finding out Outliers from the Data.mp4
[a379ced321045ab2]
|
66,308,856 |
8B14ED7B |
93. Using Winsorization to deal with Outliers.mp4
[6c544eb86f0ee604]
|
53,003,269 |
653D0261 |
94. Deleting and Capping the Outliers.mp4
[393ea1c831da0439]
|
63,706,493 |
AF5B368D |
95. Dealing with Outliers in a real-world scenario.mp4
[9899fd47ff2f55d8]
|
53,370,599 |
ADD80DE0 |
96. Quiz Solution.mp4
[de61321cb189a11e]
|
58,799,631 |
C3FC28CF |
97. Introduction to reindex, set_index, reset_index, and sort_index Functions.mp4
[51f850e0b33eac04]
|
46,857,525 |
CF41D8FA |
98. Introduction to Replace and Droplevel Function.mp4
[a4981bce87ba4b13]
|
34,568,065 |
FB2502D9 |
99. Introduction to Split and Strip Function.mp4
[564476a060d40872]
|
39,648,828 |
BD7F72EA |
100. Introduction to Stack, and Unstack Functions.mp4
[5738bb7747abaf8]
|
26,609,231 |
B6693424 |
101. Introduction to Melt, Explode, and Squeeze Functions.mp4
[2132f3f6d5ba23e8]
|
43,385,073 |
7D64012F |
102. Data Cleaning on Big Mart Dataset.mp4
[7d1579a2e0f0bf8c]
|
40,153,977 |
CED03FD4 |
103. Data Cleaning on Movie Dataset.mp4
[cb648d0988e53355]
|
39,105,796 |
58A3AED1 |
104. Data Cleaning on Melbourne Housing Dataset.mp4
[e2ea5d62fbf92725]
|
44,177,088 |
F3740C93 |
105. Data Cleaning on Naukri Dataset.mp4
[75075590b745616c]
|
111,396,703 |
D9CD48A5 |
106. Univariate Analysis.mp4
[563e05f3d0627ea4]
|
59,818,099 |
7555FD9C |
107. Bivariate Analysis.mp4
[bdf39e330067cedb]
|
47,179,548 |
2AAB4067 |
108. Multivariate Analysis.mp4
[951e8307f7959c83]
|
74,283,884 |
59A2A859 |
109. Quiz Solution.mp4
[c55e23e260bcbcee]
|
49,368,882 |
4F0F3DAE |
110. Scatter Plots.mp4
[6a93eb12df6c08a4]
|
47,344,092 |
1C5826F2 |
111. Charts with Colorscale.mp4
[7d08e2f3b63804b3]
|
33,350,515 |
661FD1D8 |
112. Bar, Line, and Area Charts.mp4
[18d1f522bd76ac07]
|
50,892,539 |
4FE2E728 |
113. Facet Grids.mp4
[8bca504a711b8237]
|
39,759,518 |
E0429301 |
114. Statistical Charts.mp4
[983109c15817b3d1]
|
40,237,804 |
B025ECB6 |
115. Polar Charts.mp4
[f68892f1efdf5de5]
|
30,717,264 |
89AC6CE0 |
116. Subplots.mp4
[24522cc17a29a003]
|
36,483,871 |
DCF90F03 |
117. 3D Charts.mp4
[f2f5a1e5f1e3c75c]
|
25,757,819 |
A7E8AE57 |
118. Waffle Charts.mp4
[d2ad66d27d8e713d]
|
30,774,895 |
ADBC4680 |
119. Maps.mp4
[6b8e10f8adee8b68]
|
32,207,114 |
951A6E38 |
120. Quiz Solution.mp4
[4f01854b1db38ed7]
|
51,203,451 |
9180639A |
121. Animation with Bubbleplot.mp4
[d84ab1aa759e6caf]
|
50,099,712 |
33A9B498 |
122. Animation with Facets.mp4
[d6c673a3c4f5e33f]
|
28,005,400 |
611BE337 |
123. Animation with Scatter Maps.mp4
[bb4df704fecaaf92]
|
23,752,635 |
D37FA75D |
124. Animation with Choropleth Maps.mp4
[a7ad21616bd74f97]
|
32,053,825 |
1141FEDA |
125. Quiz Solution.mp4
[80dadb718ed42030]
|
36,260,866 |
7874B8CA |
126. Introduction to Ipywidgets.mp4
[b5ca6179af933c0e]
|
40,432,912 |
5005E631 |
127. Interactive Univariate Analysis.mp4
[557c44e6d8c2b3f2]
|
31,330,586 |
7796DDF6 |
128. Interactive Bivariate Analysis.mp4
[32a0f911060231a9]
|
35,506,388 |
79BB3326 |
129. Interactive Multivariate Analysis.mp4
[61b0cfba1469185d]
|
30,591,373 |
256E9D48 |
130. Quiz Solution.mp4
[a5b0be5e59450258]
|
56,430,603 |
D493F8BE |
131. Sunburst Charts.mp4
[f38591287f511f36]
|
34,753,408 |
C1CEC28B |
132. Parallel Co-ordinate Charts.mp4
[5517e77dc83765f0]
|
24,077,459 |
BDB4AA28 |
133. Funnel Charts.mp4
[e682075e0ed76c89]
|
41,040,544 |
CD4AE02B |
134. Gantt Charts.mp4
[2cc9c6e502a3a830]
|
26,299,130 |
6E49730B |
135. Ternary Charts.mp4
[9042e96549bc6c2c]
|
21,344,716 |
1F6BFFB1 |
136. Tree Maps.mp4
[27009c7f9171f888]
|
22,488,305 |
0C421EDB |
137. Network Charts.mp4
[9830c8ced12b1fdb]
|
41,666,191 |
7CAD3033 |
138. Quiz Solution.mp4
[a19e4bf5a2031dab]
|
40,379,087 |
3E345D74 |
139. Introduction to Feature Engineering.mp4
[e34d88fc3aa5c0be]
|
62,944,910 |
8CA8FFC1 |
140. Removing Unnecessary Columns.mp4
[aca6b94a3f55383b]
|
59,621,856 |
25CCA4CF |
141. Decomposing Time and Date Features.mp4
[677975e7034788f8]
|
40,151,106 |
D99DACFB |
142. Decomposing Categorical Features.mp4
[904a0f6dc6fead15]
|
40,125,071 |
4C3CF0C1 |
143. Binning Numerical Features.mp4
[7fd101378ff889b]
|
62,234,196 |
F06A0C62 |
144. Aggregating Features.mp4
[cf7c4d0795661de7]
|
59,628,442 |
E47F4F0F |
145. Introduction to Feature Engineering on Text Data.mp4
[f79d639f2d5e71dc]
|
35,462,283 |
27078C96 |
146. Reading and Summarizing the Text.mp4
[51b6a0c5aa5079e5]
|
31,948,588 |
8C5319CC |
147. Finding the Length, Polarity and Subjectivity.mp4
[26df92ef74ff862c]
|
76,554,643 |
D1939473 |
148. Finding the Words, Characters, and Punctuation Count.mp4
[3daffe2d4c8e034]
|
38,044,396 |
A0A70658 |
149. Counting Nouns and Verbs in the Text.mp4
[b577b0de00c3d471]
|
32,944,119 |
CDDC2D46 |
150. Counting Adjectives, Adverb, and Pronouns.mp4
[377b606c7efa9ccd]
|
24,858,694 |
AA52CCBA |
151. Introduction to Assign and Update Functions.mp4
[80a746ac3c81546d]
|
37,885,285 |
431442CB |
152. Introduction to at_time and between_time Functions.mp4
[7438058eb98f33cc]
|
31,692,591 |
A36D654C |
153. Introduction to nlargest and nsmallest Functions.mp4
[7792cd4b09fe45f6]
|
37,032,024 |
E4B874F5 |
154. Introduction to Expanding Function.mp4
[9bafcf29116138]
|
29,797,512 |
B6226901 |
155. Introduction to Cumulative Functions.mp4
[822d6be4dbdee180]
|
32,614,798 |
A0D0D2E2 |
156. Quiz Solution.mp4
[99b73794b157e196]
|
53,693,890 |
FC5A1EF1 |
157. Feature Engineering on Employee Data.mp4
[b795688f81aece0e]
|
59,914,976 |
E5AFCAEC |
158. Feature Engineering on FIFA Data.mp4
[9966b03a1649a1ec]
|
46,922,732 |
518663C6 |
159. Feature Engineering on Hotel Reviews.mp4
[d000729997aae13d]
|
36,753,689 |
6AD196FE |
160. Feature Engineering on Marketing Data.mp4
[697edd5a3b567403]
|
61,425,017 |
56C1F112 |
161. Feature Engineering on Titanic Data.mp4
[86944b43d521102e]
|
52,030,976 |
1A743D41 |
162. Quiz Solution.mp4
[694a692ec77ecafa]
|
67,993,764 |
D34DEC5A |
163. Types of Encoding Techniques.mp4
[4ab869337a0906ea]
|
63,842,096 |
89D294AD |
164. Label Encoding.mp4
[3632d3c86da9f330]
|
35,167,157 |
D84B87B0 |
165. Feature Mapping for Ordinal Variables.mp4
[d623b4ffa37d1357]
|
30,422,479 |
DC5F44BA |
166. OneHot Encoding.mp4
[cca14b463a3bc424]
|
36,250,150 |
779C655F |
167. Binary and BaseN Encoding.mp4
[d428b9a1a53acefd]
|
34,827,012 |
B476C38D |
168. Mean and Frequency Encoding.mp4
[320147e85970c8b8]
|
23,939,478 |
CB0EC917 |
169. Quiz Solution.mp4
[c274c56f9b3b65e5]
|
54,405,458 |
33E76B48 |
170. Introduction to Skewness and Normal Distribution.mp4
[3265f4fba2fb2336]
|
39,376,254 |
70D8DFC6 |
171. Square and Cube Root Transformation.mp4
[55b4f8432d8f62cf]
|
41,328,480 |
B7851B1C |
172. Log transformation.mp4
[40e02bd4933525c0]
|
29,371,022 |
B4438FB1 |
173. BoxCox transformation.mp4
[958a891b34c203d2]
|
34,092,578 |
927994A4 |
174. Quiz Solution.mp4
[60f2b9f741c4a04e]
|
59,415,365 |
2B51ABBB |
175. Train, Test and Validation Split.mp4
[b29215ffbb6fbc91]
|
46,380,478 |
406893C6 |
176. Standardization and Normalization.mp4
[19f42d3b3702bbaa]
|
41,631,191 |
3854D0C7 |
177. Quiz Solution.mp4
[82bad005bf8d3e38]
|
60,278,045 |
8A9DFE31 |
178. Introduction to Linear Regression.mp4
[736093c50163601]
|
85,153,619 |
734D937D |
179. Implementing Linear Regression using Sklearn.mp4
[25f6eecc07f678f7]
|
77,007,823 |
938B5615 |
180. Feature Selection using RFECV.mp4
[beefd23c3b2312f3]
|
90,088,133 |
5A279968 |
181. Data Transformation with Linear Regression.mp4
[e23963c87b854331]
|
60,299,944 |
FFE6A02B |
182. Applying Cross Validation.mp4
[efba02a525ad929b]
|
110,741,324 |
30D15D4C |
183. Analyzing the performance of Regression models.mp4
[d20eb0183a503e02]
|
114,255,376 |
5C039FB6 |
184. R2 score and adjusted R2 score intuition.mp4
[c4bf1c02e50498a6]
|
112,223,151 |
2762A042 |
185. MAE, RMSE, R2 and Adjusted R2 in code.mp4
[a5a569e0f57c3219]
|
51,373,033 |
5199A6CC |
186. Applying real time prediction on our model.mp4
[dc22a0070f7040fb]
|
112,823,242 |
456737DF |
187. Industry relevance of linear regression.mp4
[29e5c65461d1daf]
|
52,290,450 |
4126222C |
188. Quiz Solution.mp4
[8c8e83c10af1a3c4]
|
79,277,282 |
8A289C61 |
189. Introduction to Logistic Regression.mp4
[f79b8de90a41dd79]
|
111,558,476 |
8D752B9D |
190. Implementing Logistic Regression using Sklearn.mp4
[ced3097e95498617]
|
91,231,497 |
26EF7FB3 |
191. Feature Selection using RFECV.mp4
[9b233b5181cfcb2a]
|
44,184,666 |
3A7BCCFC |
192. Hyperparameter tuning using Grid search.mp4
[cf9899f4f1f37a2f]
|
61,597,339 |
FA91DBDE |
193. Applying Cross Validation.mp4
[76db26bfc40eccf7]
|
59,471,741 |
E521376B |
194. How to analyze performance of a classification model.mp4
[4550273848fc48d1]
|
153,269,414 |
B1DE8AD7 |
195. Using accuracy score to analyze the performance of model.mp4
[71f9a64bdc8b5ba0]
|
58,222,941 |
7986F9C9 |
196. Using ROC-AUC score to analyze the performance of model.mp4
[48b8dabe86f24076]
|
154,795,999 |
EF6F27D6 |
197. Real time prediction using logistic regression.mp4
[db8fe7da3ac0a266]
|
78,269,246 |
6A54ABDA |
198. Industry Relevance of Logistic Regression.mp4
[eb12b2a9ad0c9374]
|
62,785,685 |
51F0D374 |
199. Quiz Solution.mp4
[818a87797caa603d]
|
56,332,318 |
83641E0C |
200. Introduction to Support Vector machines.mp4
[7d3982f47fa4feb3]
|
113,413,633 |
CC60A8AB |
201. The kermel trick for support vector machine.mp4
[daf9d57daa5d252c]
|
73,787,471 |
95D764E6 |
202. Implementing support vector machine using sklearn.mp4
[7730447fdad61de9]
|
70,697,355 |
0B13DE80 |
203. Introduction to K nearest neighbors.mp4
[ff826a5297bad0b8]
|
109,389,446 |
B98EE5E9 |
204. Implementing KNN using Sklearn.mp4
[4ffa977a14f308b1]
|
34,831,031 |
CF94540A |
205. Introduction to Naive Bayes.mp4
[cfe354e57ce540f7]
|
183,209,446 |
00251FD6 |
206. Implementing Naive Bayes using sklearn.mp4
[e3f511d2106e1308]
|
64,956,133 |
5B5FCDF9 |
207. When should we apply SVM, KNN and Naive bayes.mp4
[bf65497f37be678c]
|
73,144,177 |
1C84D478 |
208. Quiz Solution.mp4
[2570753b7fe3f33]
|
68,325,894 |
D0C02D72 |
209. Intuition for decision trees.mp4
[40252c622e7102f6]
|
85,963,435 |
10488CC7 |
210. Attribute selection method- Gini Index and Entropy.mp4
[5eaf938432fcdb9c]
|
229,272,773 |
3A783D1D |
211. Advantages and Issues with Decision trees.mp4
[edaca9e1517de3f]
|
55,955,061 |
1621F1D3 |
212. Implementing Decision tree using Sklearn.mp4
[12642e9ab8562740]
|
37,543,185 |
FDBE5DF0 |
213. Understanding the concept of Bagging.mp4
[c9ce5262126c1f68]
|
69,184,200 |
91E72DBE |
214. Introduction to Random forest.mp4
[2fd303122f1f3090]
|
71,391,094 |
3A3E5D79 |
215. Understanding the parameters of Random forest.mp4
[f63f1c904d9376e3]
|
56,259,443 |
37928546 |
216. Implementing random forest using Sklearn.mp4
[5a619df03cf84f9f]
|
50,196,523 |
E31D1914 |
217. Understading the concept of boosting.mp4
[c257487234a838b2]
|
59,909,971 |
0FD159AF |
218. Intuition for Adaboost and Gradient Boosting.mp4
[e6ece110c26f9c16]
|
160,732,425 |
5F0A9A87 |
219. Implementing AdaBoost using sklearn.mp4
[49ea1c7a03e2013b]
|
95,223,417 |
2DF11FB9 |
220. Implementing Gradient Boosting using sklearn.mp4
[36f5577eb68c96f9]
|
70,168,408 |
9CE4E780 |
221. Getting High level intuition for XGBoost.mp4
[6fad60b6789d8e72]
|
43,057,008 |
EE0BDD3E |
222. Implementing XGBoost using sklearn.mp4
[60128d1f84e0f23b]
|
68,308,081 |
AF948C5E |
223. Introudction to Ensembling techniques.mp4
[ac39067486d2a296]
|
140,520,618 |
7B8F84B0 |
224. Why Imbalanced Data needs extra attention.mp4
[d5948c690ad207ee]
|
56,210,409 |
38C255DE |
225. Using Resampling Techniques to Balance the Data.mp4
[f6dab98e3187eaff]
|
73,970,352 |
FB91952E |
226. Solving a Real World Problem.mp4
[3a2d06cb0e1b8728]
|
59,737,033 |
6F1CA5B1 |
227. Preparing the Data for Predictive Modelling.mp4
[f333e76f5f72ed81]
|
60,729,922 |
7B4F6A1E |
228. Applying Logistic Regression using Sklearn.mp4
[21e3cdf5cad2b8cb]
|
74,583,563 |
74277E28 |
229. Applying Random Forest using Sklearn.mp4
[1acb7e0499e48c2b]
|
44,721,745 |
1B3ED4E5 |
230. Quiz Solution.mp4
[7220f8fd9e73f075]
|
70,060,062 |
A2E6EE2A |
231. Implementing Random Over Sampling using Imblearn.mp4
[176020bd53393c91]
|
57,044,651 |
7C26118F |
232. Implementing Random Under Sampling using Imblearn.mp4
[2d8aecff119fc12f]
|
60,333,749 |
2CC470A7 |
233. Implementing Synthetic Sampling using Imblearn.mp4
[fa7931b81b1e2f77]
|
60,230,039 |
69918CFD |
234. Implementing Neighbors based Sampling using Imblearn.mp4
[83bcce772471d41c]
|
67,116,778 |
6B317ED2 |
235. Combination of Oversampling and Under sampling.mp4
[5a07138fec1f492f]
|
58,457,615 |
D4A4A0A1 |
236. Implementing Ensemble Models for Imbalanced Data.mp4
[60d865ad3f09df12]
|
57,536,827 |
BC8C3D22 |
237. Introduction to XG Boost for Imbalanced Data.mp4
[349c6513d7596e40]
|
45,642,331 |
1938D826 |
238. Comparing the Results.mp4
[86024b844abdd8a7]
|
43,515,138 |
6DDE7FF4 |
239. Quiz Solution on Imbalanced Machine Learning.mp4
[784272af0578e418]
|
39,688,524 |
1F799B58 |
240. Introduction to Clustering.mp4
[2b60dc66eac6bfdc]
|
60,639,012 |
141DF085 |
241. Types of Clustering.mp4
[707111473af98402]
|
68,340,840 |
EB48A377 |
242. Applications of Clustering.mp4
[e5b70db7a508ea01]
|
58,657,002 |
85F5B16E |
243. Using the Elbow Method for Choosing the Best Value for K.mp4
[4cb263d11a7fdd53]
|
70,304,037 |
0E2A97BC |
244. Introduction to K Means Clustering.mp4
[2c2b5b75f33ec423]
|
51,669,420 |
BA55B961 |
245. Solving a Real World Problem.mp4
[c9dab8309dd2cf82]
|
74,452,012 |
075DA866 |
246. Implementing K Means on the Mall Dataset.mp4
[24d90179af22b0b2]
|
75,036,775 |
75E766DF |
247. Using Silhouette Score to analyze the clusters.mp4
[d6e0a0b26e4df1ee]
|
101,013,987 |
BA2FF526 |
248. Clustering Multiple Dimensions.mp4
[37d6f4bf09c79409]
|
52,428,715 |
C9FCAC11 |
249. Introduction to Hierarchical Clustering.mp4
[ed1f5e9e562ea1c5]
|
92,782,842 |
500DDF43 |
250. Introduction to Dendrograms.mp4
[d4a76f64e2e139c1]
|
43,795,960 |
5A6803C3 |
251. Implementing Hierarchical Clustering.mp4
[7cb297b0202a80bb]
|
54,886,925 |
3B310125 |
252. Introduction to DBSCAN Clustering.mp4
[ddbb92003bcaeb57]
|
79,294,681 |
AD21BBE4 |
253. Implementing DBSCAN Clustering.mp4
[f6af96e5ee67a3ab]
|
50,189,372 |
95FAE262 |
254. Why High Dimensional Datasets are a Problem.mp4
[57c12635a15db4ab]
|
83,061,524 |
E1F2F0B5 |
255. Methods to solve the problem of High Dimensionality.mp4
[f50fcc0c131626c1]
|
59,927,217 |
FA6CEF8E |
256. Solving a Real World Problem.mp4
[36b2cba2878a7676]
|
103,616,204 |
F3D8BBFA |
257. Introduction to Correlation using Heatmap.mp4
[1f4c6ef30cc6cd23]
|
74,866,230 |
72CFF483 |
258. Removing Highly Correlated Columns using Correlation.mp4
[e5943f902a2dcac3]
|
51,230,375 |
C80A5384 |
259. Introduction to Variance Inflation Filtering.mp4
[e34bc92fb4757829]
|
51,018,565 |
1D8BCA55 |
260. Implementing VIF using statsmodel.mp4
[c79abf91074de424]
|
50,149,351 |
C78D6938 |
261. Introduction to Recursive Feature Selection.mp4
[87f5cbd1b24a5a6e]
|
59,363,077 |
F7023DE1 |
262. Implementing Recursive Feature Selection.mp4
[974f577136d2f6ea]
|
53,381,137 |
F895BC6E |
263. Introduction the Boruta Algorithm.mp4
[b89d6d2541003947]
|
55,020,344 |
45A214AD |
264. Implementing the Boruta Algorithm.mp4
[d8ad0f57c14775b6]
|
45,295,948 |
2A2721E5 |
265. Introduction to Principal Component Analysis.mp4
[cb6d76cd75cdb607]
|
77,364,519 |
CB6E0E8B |
266. Implementing PCA.mp4
[ee577aaa093d8125]
|
58,209,970 |
000A9023 |
267. Introduction to t-SNE.mp4
[34c2e695ee79dfb5]
|
85,211,804 |
863D2B40 |
268. Implementing t-SNE.mp4
[bf16efebac26bd17]
|
37,852,769 |
5470BCEA |
269. Introduction to Linear Discriminant Analysis.mp4
[339384eb843fed4e]
|
51,266,078 |
C6FB1BEC |
270. Implementing LDA.mp4
[54144c90377740a7]
|
38,528,582 |
85D2E9AD |
271. Difference between PCA, t-SNE, and LDA.mp4
[834e17b16ad4148f]
|
67,926,929 |
F2EC5F32 |
272. Introduction to Recommender systems.mp4
[d730a400dcb98c2b]
|
42,488,167 |
7679256F |
273. What are it's Use Cases.mp4
[8fe6302a4adf636d]
|
47,242,851 |
31C4FF82 |
274. Types of Recommender Systems.mp4
[124fb2775f3d7a47]
|
59,275,161 |
2CE5EA31 |
275. Evaluating Recommender Systems.mp4
[531247bbd93a5dd6]
|
55,726,801 |
C2078A5B |
276. Introduction to Content Based Filtering.mp4
[39872b62abfd5542]
|
61,860,589 |
53E41794 |
277. Preprocessing the Data for Content Based Filtering.mp4
[d907de4caed8996a]
|
80,392,036 |
7E00DDA7 |
278. Filtering Movies Based on Genres.mp4
[d18cbe5dc3184c2a]
|
61,587,030 |
B9B8E840 |
279. Introduction to Transactional Encoder.mp4
[b6970698275be67f]
|
66,461,516 |
A5B024B5 |
280. Recommending Similar Movies to Watch.mp4
[b26c6bcd4481843b]
|
58,747,362 |
524CD8C3 |
281. Quiz Solution.mp4
[e2a5458cc43cc703]
|
50,852,855 |
8CCFBB27 |
282. Introduction to Collaborative Filtering.mp4
[3a474609bbd022dc]
|
84,777,178 |
0290B418 |
283. Preprocessing the Data for Collaborative Filtering.mp4
[250c67091bee019f]
|
75,897,971 |
78755542 |
284. Implementation of User Based Collaborative Filtering.mp4
[1b7cff603055f623]
|
65,155,063 |
92EDFA32 |
285. Interpreting the Results obtained from User Based Filtering.mp4
[d66126aa02d2a49c]
|
66,680,052 |
32740CBA |
286. Implementation of Item Based Collaborative Filtering.mp4
[278c0886885d4504]
|
66,630,541 |
4663C351 |
287. Quiz Solution.mp4
[c7c2919e22ec1c25]
|
58,316,583 |
ED1488C2 |
288. Introduction to SVD.mp4
[1b2f906767237f46]
|
117,464,622 |
D7951226 |
289. Implementing SVD using Surprise.mp4
[7a048ea319d5dffa]
|
42,594,411 |
AB1901BE |
290. Interpreting Results Obtained from SVD.mp4
[464c77183e49bf24]
|
48,230,103 |
0C5F0F60 |
291. Comparing Content, and Collaborative Based Filtering.mp4
[f0865e28762454f1]
|
64,994,126 |
FEA66F95 |
292. Quiz Solution.mp4
[dd504fb8e5835364]
|
50,261,587 |
76CE232F |
293. Case Study for Netflix.mp4
[411f04870244f6c3]
|
59,107,796 |
1FE78996 |
294. Case Study for Youtube.mp4
[92a18e190f10539e]
|
60,951,107 |
A2E567A1 |
295. What is a Time Series Data.mp4
[63d7545aff55c8fb]
|
36,596,736 |
EDAD7003 |
296. Types of Forecasting.mp4
[83b9ff87a546edb4]
|
47,496,121 |
B95B2FBB |
297. Regression Vs Time Series.mp4
[f3bf296d3b4431f1]
|
86,969,133 |
B2595D6A |
298. Applications of Time Series.mp4
[504951aa1edbbbcd]
|
49,574,765 |
72C00905 |
299. Components of Time Series.mp4
[2fc3c17d7fbb9791]
|
54,470,246 |
10081E3B |
300. Quiz Solution.mp4
[6cc24d19b06ab80b]
|
61,767,739 |
EB96B08A |
301. Getting Time Series data.mp4
[b35bc27cb3fa682c]
|
74,525,439 |
ADC57E41 |
302. Handling Missing Values.mp4
[cc59052368eb5d1a]
|
122,120,115 |
E28659C5 |
303. Handling Outlier Values.mp4
[3c64d8b622f27574]
|
67,554,633 |
95060632 |
304. Time Series Decomposition.mp4
[b58019ef975ac174]
|
94,293,411 |
1109CE01 |
305. Splitting Time Series Data.mp4
[36e330a67fe9629f]
|
66,584,470 |
97BA1427 |
306. Quiz Solution.mp4
[83fd539f98be8ba9]
|
61,589,948 |
AD96A2C2 |
307. Basic Forecasting Techniques.mp4
[b2d690972fc459dc]
|
58,174,176 |
686AE018 |
308. Metrics for Time series Forecasting.mp4
[ee78b9cda8ea8e77]
|
82,512,701 |
18EF81A6 |
309. Simple Moving Averages.mp4
[3cfdb816bb4a5f1c]
|
52,548,971 |
A70082FB |
310. Simple Exponential Smoothing.mp4
[322a27b9581fd9b9]
|
69,857,358 |
3594C52C |
311. Holt and Holt Winter Exponential Smoothing.mp4
[df5b4ef08ef6f12c]
|
76,678,712 |
F6D8AB83 |
312. Quiz Solution.mp4
[7456af06dccaadcd]
|
45,183,706 |
56CA30AE |
313. Introduction to Auto Regressive Models.mp4
[25c20f6f4571f1b2]
|
36,381,643 |
B99FBA69 |
314. Checking for Stationarity Part 1.mp4
[109ee4c8dcb41581]
|
68,150,471 |
3A12A2AC |
315. Checking for Stationarity using Statistical Methods Part 2.mp4
[4d35d6f0f5e7aca8]
|
79,109,269 |
C9C1A5DD |
316. Checking for Stationary Implementation.mp4
[4b2a64e0aa428c93]
|
39,940,372 |
63450064 |
317. Converting Non-Stationary Series into Stationary.mp4
[e2e955d10d52d2c]
|
50,421,446 |
294560EE |
318. Converting Non-Stationary Series into Stationary Implementation.mp4
[f65e9405acd6545e]
|
50,501,036 |
4E7C12AC |
319. Auto Correlation and Partial Correlation.mp4
[4ef4e37208200fd4]
|
80,567,992 |
CBD160D4 |
320. Auto Correlation and Partial Correlation Implementation.mp4
[c5e9b645a88fc92c]
|
40,349,275 |
3EBDC106 |
321. The Simple Auto Regressive Model.mp4
[27a2190da9aa94ce]
|
66,494,345 |
18140073 |
322. The Simple Auto Regressive Model Implementation.mp4
[6075a9cefb18b64a]
|
68,123,145 |
85F30E93 |
323. Moving Average Model.mp4
[d60ecb0739c37e17]
|
37,001,185 |
22AC14EF |
324. Moving Average Model Implementation.mp4
[d431a58d42dd32b5]
|
24,346,900 |
2935B1DE |
325. Quiz Solution.mp4
[19e8c2ec599f3205]
|
40,152,239 |
6A0F22E9 |
326. Understanding ARMA Model.mp4
[81eb045505e0eb6f]
|
59,538,023 |
3CF44E7A |
327. Implementing ARMA Model.mp4
[55466cad7a55a2f0]
|
50,554,548 |
2F5D48BE |
328. Understanding ARIMA Model.mp4
[300c5a0426eb1ffa]
|
58,577,437 |
0F9EFDBF |
329. Implementing ARIMA Model.mp4
[6caace63a22b0648]
|
34,797,821 |
B1A20A2F |
330. Understanding SARIMA Model.mp4
[8e7251524a2abe70]
|
73,335,140 |
598E7F01 |
331. Implementing SARIMA Model.mp4
[84764bb7740937d]
|
39,986,538 |
73561C5E |
332. Quiz Solution.mp4
[57ec589632f067dc]
|
45,534,455 |
ACFADCF9 |
333. Understanding ARIMAX Model.mp4
[e86188fffdfc03bd]
|
69,726,328 |
AF642371 |
334. Implementing ARIMAX Model.mp4
[999098d3fd309817]
|
46,919,044 |
74F02471 |
335. Understanding SARIMAX Model.mp4
[8c6fb464f517a96]
|
45,970,410 |
B9BE71A8 |
336. Implementing SARIMAX Model.mp4
[92331929dde2b99c]
|
62,877,092 |
90C7BA0E |
337. Quiz Solution.mp4
[b221b87dacb361ef]
|
35,857,059 |
6C35A19C |
338. How to Choose the Right Model.mp4
[ab0a3e954885b984]
|
36,840,197 |
BB4B49B2 |
339. Choosing the Right for Model Smaller Datasets.mp4
[955fe3b879ce74a1]
|
54,834,392 |
817F39B3 |
340. Choosing the Right Model for Larger Datasets.mp4
[b7ddc8e605376489]
|
38,064,586 |
EC7A62DA |
341. Best Practices while Choosing a Time series Model..mp4
[cd3ba3fcd2e43e07]
|
45,108,426 |
7ADA1AD6 |
342. Quiz Solution.mp4
[b9445ec14a7cc02b]
|
49,050,563 |
B7F3F90A |
343. Why do we Evaluate Performance.mp4
[4f6844f00d0611c4]
|
33,314,304 |
529551DB |
344. Mean Forecast Error.mp4
[93d9b8d7f4e7fa2]
|
55,484,131 |
7171A6FE |
345. Mean Absolute Error.mp4
[f3ba653c839fd5c0]
|
37,278,638 |
832AE54D |
346. Mean Absolute Percentage Error.mp4
[7da366f1089d222b]
|
31,191,683 |
3BE3D411 |
347. Root Mean Squared Error.mp4
[8fb344a30900ea02]
|
30,764,631 |
1DBBD60B |
348. Quiz Solution.mp4
[fbcf72faea6cec9c]
|
48,246,392 |
E1647DE1 |
349. Setting up the Environment.mp4
[2a4ef5f092d3adf9]
|
43,726,903 |
66BB8F27 |
350. Understanding the Dataset.mp4
[4b2fc03f531d9d]
|
100,523,065 |
20406762 |
351. Understanding the Problem Statement.mp4
[5bc9e1f34c92286]
|
62,669,006 |
BE4F355C |
352. Performing Descriptive Statistics.mp4
[e1885297960fc56b]
|
64,668,254 |
BE4EEBFD |
353. Missing Values Treatment.mp4
[7250c2ad84c9b797]
|
40,535,486 |
36FA6B92 |
354. Outlier Values Treatment.mp4
[6e8f51a3a4a2019e]
|
44,541,341 |
BD0C1DD5 |
355. Univariate Analysis.mp4
[dd4da97c7e2afcdc]
|
55,715,088 |
CD9174D4 |
356. Bivariate Analysis.mp4
[ef9858073d036291]
|
38,957,050 |
ACFBF52B |
357. Multivariate Analysis.mp4
[a41c93489d69740d]
|
41,882,801 |
7584089B |
358. Feature Engineering.mp4
[13bd48f41cc80b35]
|
52,869,276 |
F2FEBF90 |
359. Categorical Encoding.mp4
[d94db905f15aebe6]
|
39,246,806 |
27B8D5A4 |
360. Data Processing.mp4
[a170607d052bf0a1]
|
70,926,688 |
BA8ADBAB |
361. Feature Scaling.mp4
[d826886a57fb63a2]
|
44,318,806 |
18120A81 |
362. Predictive Modelling.mp4
[7d9141353f435514]
|
46,809,062 |
5CEC373E |
363. Performance Analysis.mp4
[33bc0245a2ab0f7f]
|
80,911,365 |
A6558981 |
364. Improvements Possible.mp4
[f833b1b52dc4aee5]
|
43,893,711 |
CDA701E7 |
365. Major Takeaways from the Project.mp4
[2077a44d96dce0b6]
|
30,389,814 |
8B436762 |
366. Setting up the Environment.mp4
[867e8c7b4685514d]
|
52,542,609 |
C260FFB7 |
367. Understanding the Dataset.mp4
[c1b834ff384047d5]
|
109,100,636 |
E11CA891 |
368. Understanding the Problem Statement.mp4
[552af8f9677a1497]
|
64,789,611 |
ABB86C4C |
369. Performing Univariate Analysis.mp4
[58ceb9ab7995a84]
|
94,100,637 |
4EBB2864 |
370. Performing Bivariate Analysis.mp4
[4937f40690a54cd8]
|
74,920,338 |
1943CD65 |
371. Performing Multivariate Analysis.mp4
[651462457f6eac0d]
|
90,136,437 |
2CDBE43F |
372. Preparing the data for Modelling.mp4
[900ae1adc75bf7c5]
|
95,277,415 |
47191020 |
373. Applying Linear Regression Model.mp4
[fc4c298f5a4b48be]
|
134,295,396 |
250957AF |
374. Applying Random Forest Model.mp4
[ca1b2a7b03116732]
|
57,023,777 |
D8F0DC37 |
375. Applying Gradient Boosting Model.mp4
[e9ad29bbdbff97f]
|
73,800,250 |
891437AF |
376. Creating Ensembles of Models.mp4
[19fd7ebadeda1de4]
|
59,834,194 |
B1555AEA |
377. Comparing Performance of these Models.mp4
[4e791d7693835c11]
|
38,319,394 |
60272B21 |
378. More things to Try.mp4
[7df9361ebdd86a71]
|
51,039,899 |
283CA983 |
379. Major Takeaways from the Project.mp4
[ccb15e97cae88fc3]
|
60,432,583 |
16267CC6 |
380. Understanding the Problem Statement.mp4
[9291fce403c499fb]
|
47,702,972 |
2025B78E |
381. Setting up the Environment.mp4
[68f441d766ee80ef]
|
71,921,148 |
A93E2FC6 |
382. Understanding the Dataset.mp4
[65a9fb671be4a606]
|
43,116,341 |
F69C59E5 |
383. Performing Descriptive Statistics.mp4
[18d93e58f8ac9ef7]
|
78,968,093 |
74CC4A8D |
384. Data Cleaning.mp4
[647ec7fdc7ecf818]
|
70,217,339 |
F9AD6A75 |
385. Univariate Data Visualizations.mp4
[8398794fbb325f3a]
|
68,329,294 |
CD08C589 |
386. Bivariate Data Analysis.mp4
[df4c4168adbd3a3a]
|
73,614,400 |
6093590B |
387. Preparing the Data for Modelling.mp4
[2e5bce3ab3c86cbb]
|
44,900,939 |
2B24AA40 |
388. Applying Resampling.mp4
[d9bbe6f4125c6518]
|
59,719,569 |
55A2968E |
389. Applying Logistic Regression.mp4
[1db69df8b910ee40]
|
54,923,222 |
CE7F849C |
390. Applying Gradient Boosting.mp4
[b51d33df5a3e4850]
|
40,482,202 |
4D1D1749 |
391. Summary.mp4
[140ae7b0a9717f]
|
46,317,936 |
C33B2D44 |
392. Setting up the Environment.mp4
[2456687c63b66d7a]
|
48,687,057 |
E84D48FE |
393. Understanding the Dataset.mp4
[f1d44bdbbb21b6f8]
|
57,864,348 |
BAF73203 |
394. Understanding the Problem Statement.mp4
[83cffe9a01488e1a]
|
37,106,008 |
BCD2D8EF |
395. Performing Descriptive Statistics.mp4
[a6233e1f8232dac1]
|
77,145,502 |
76909D9C |
396. Analyzing Agricultural Conditions.mp4
[1a1b47d66f99ec22]
|
41,068,067 |
07358A24 |
397. Clustering Similar Crops.mp4
[5b13ad3cb40f6148]
|
66,697,620 |
E2022371 |
398. Visualizing the Hidden Patterns.mp4
[da0fe999c8673bf]
|
29,125,491 |
F3206276 |
399. Predictive Modelling.mp4
[db41c1c4453d965d]
|
42,329,245 |
C9A19C9E |
400. Real Time Predictions.mp4
[c51a7535493bb06b]
|
28,994,458 |
ADE9FF4C |
401. Summarizing the Key-Points.mp4
[1d2da6676e1c4ce7]
|
42,406,921 |
425AD5D7 |
402. Understanding the Problem Statement.mp4
[4f8863e1f85eefe4]
|
61,608,713 |
779555EE |
403. Setting up the Environment.mp4
[65c6f8038dff9f8d]
|
34,585,878 |
CB9FDF11 |
404. Data Analysis and Visualization.mp4
[1d0fc3ab8610876b]
|
81,498,243 |
C6EF98E1 |
405. KMeans Clustering Analysis.mp4
[61e05977bdd0ddfb]
|
64,775,068 |
5119BC64 |
406. Applying Hierarchical Clustering.mp4
[7f2e505d7a35a4d1]
|
42,764,273 |
44FF04D1 |
407. Using Silhouette Score as Evaluation Metric.mp4
[d277a26f9a533cac]
|
38,492,113 |
2CD133EC |
409. Major Learnings from the projects.mp4
[480c6bf2fe2765bb]
|
42,777,512 |
71B0F94F |
410. Conclusion.mp4
[a2cfd4d13d959ab1]
|
47,658,771 |
30565E01 |
1. Why should you learn Python.mp4
[26f42b7dfe868173]
|
135,238,685 |
E2F8361F |
2. Installing Python and Jupyter Notebook.mp4
[a55a84c8f56d113b]
|
99,944,238 |
83E0E524 |
3. Understanding the Interface of Jupyter Notebook.mp4
[48caf365350275a4]
|
73,739,706 |
8007B088 |
4. Naming Convention for Variables.mp4
[fe8964ee602fc45b]
|
99,544,360 |
BE9C07E4 |
5. Built in Data Types and Type Casting.mp4
[d6b0555128681b73]
|
144,218,217 |
3B62D8AC |
6. Scope of Variables.mp4
[cb886c831c84302]
|
69,712,890 |
F9352D4C |
|
Total size: |
23,967,140,194 |
|
|