Home Sewing Is Killing Fashion
  • HaArD
  • 2023-01-30 04:21:02
  • Unknown

RELEASE >

ReScene version pyReScene Auto 0.7 iLEARN File size CRC
Download
69,437
Stored files
181 59D4C092
2,415 B672123F
RAR-files
ilearn-2022mlatz5mlp.rar 350,000,000 0278FD94
ilearn-2022mlatz5mlp.r00 350,000,000 420392B7
ilearn-2022mlatz5mlp.r01 350,000,000 C981F9F4
ilearn-2022mlatz5mlp.r02 350,000,000 29B43C5F
ilearn-2022mlatz5mlp.r03 350,000,000 BBD61579
ilearn-2022mlatz5mlp.r04 350,000,000 0942AE94
ilearn-2022mlatz5mlp.r05 350,000,000 FFAD1E01
ilearn-2022mlatz5mlp.r06 350,000,000 E3CAC499
ilearn-2022mlatz5mlp.r07 350,000,000 6C990753
ilearn-2022mlatz5mlp.r08 350,000,000 9D89BA8C
ilearn-2022mlatz5mlp.r09 350,000,000 3C2B6B9C
ilearn-2022mlatz5mlp.r10 350,000,000 540E30EC
ilearn-2022mlatz5mlp.r11 350,000,000 2930B537
ilearn-2022mlatz5mlp.r12 350,000,000 D9089C58
ilearn-2022mlatz5mlp.r13 350,000,000 318D032E
ilearn-2022mlatz5mlp.r14 350,000,000 93ADBF10
ilearn-2022mlatz5mlp.r15 350,000,000 1FF710F7
ilearn-2022mlatz5mlp.r16 350,000,000 6D60B341
ilearn-2022mlatz5mlp.r17 350,000,000 2F1B0B33
ilearn-2022mlatz5mlp.r18 350,000,000 A31C3473
ilearn-2022mlatz5mlp.r19 350,000,000 9E80CF2C
ilearn-2022mlatz5mlp.r20 350,000,000 AF6EAD50
ilearn-2022mlatz5mlp.r21 350,000,000 A9ED7146
ilearn-2022mlatz5mlp.r22 350,000,000 1F33289A
ilearn-2022mlatz5mlp.r23 350,000,000 A07AD0CF
ilearn-2022mlatz5mlp.r24 350,000,000 4613BE3E
ilearn-2022mlatz5mlp.r25 350,000,000 D2AD1351
ilearn-2022mlatz5mlp.r26 350,000,000 6ED049A1
ilearn-2022mlatz5mlp.r27 350,000,000 F5D247CB
ilearn-2022mlatz5mlp.r28 350,000,000 04B5294C
ilearn-2022mlatz5mlp.r29 350,000,000 664FAF43
ilearn-2022mlatz5mlp.r30 350,000,000 7679FBAC
ilearn-2022mlatz5mlp.r31 350,000,000 8210F7D9
ilearn-2022mlatz5mlp.r32 350,000,000 17F1E830
ilearn-2022mlatz5mlp.r33 350,000,000 4DB91BBB
ilearn-2022mlatz5mlp.r34 350,000,000 1F900369
ilearn-2022mlatz5mlp.r35 350,000,000 7FBD935F
ilearn-2022mlatz5mlp.r36 350,000,000 64445DB7
ilearn-2022mlatz5mlp.r37 350,000,000 3484B406
ilearn-2022mlatz5mlp.r38 350,000,000 B082EE7F
ilearn-2022mlatz5mlp.r39 350,000,000 3C23F4C4
ilearn-2022mlatz5mlp.r40 350,000,000 870D82DE
ilearn-2022mlatz5mlp.r41 350,000,000 BD0B5321
ilearn-2022mlatz5mlp.r42 350,000,000 50471E93
ilearn-2022mlatz5mlp.r43 350,000,000 1317F3DA
ilearn-2022mlatz5mlp.r44 350,000,000 799F5125
ilearn-2022mlatz5mlp.r45 350,000,000 181BB969
ilearn-2022mlatz5mlp.r46 350,000,000 7931B94E
ilearn-2022mlatz5mlp.r47 350,000,000 A737CFF6
ilearn-2022mlatz5mlp.r48 350,000,000 D3CE163C
ilearn-2022mlatz5mlp.r49 350,000,000 3A918E85
ilearn-2022mlatz5mlp.r50 350,000,000 F7BC49B9
ilearn-2022mlatz5mlp.r51 350,000,000 DB2E724F
ilearn-2022mlatz5mlp.r52 350,000,000 33266D64
ilearn-2022mlatz5mlp.r53 350,000,000 DD4E134C
ilearn-2022mlatz5mlp.r54 350,000,000 5EBD390B
ilearn-2022mlatz5mlp.r55 350,000,000 FD9BF10A
ilearn-2022mlatz5mlp.r56 350,000,000 60868FEB
ilearn-2022mlatz5mlp.r57 350,000,000 53F66818
ilearn-2022mlatz5mlp.r58 350,000,000 E1EA8F44
ilearn-2022mlatz5mlp.r59 350,000,000 17C83716
ilearn-2022mlatz5mlp.r60 350,000,000 C736947F
ilearn-2022mlatz5mlp.r61 350,000,000 AD391336
ilearn-2022mlatz5mlp.r62 350,000,000 44DF9BED
ilearn-2022mlatz5mlp.r63 350,000,000 95908DC4
ilearn-2022mlatz5mlp.r64 350,000,000 AA6AFDFA
ilearn-2022mlatz5mlp.r65 350,000,000 4A357E64
ilearn-2022mlatz5mlp.r66 350,000,000 9B21356D
ilearn-2022mlatz5mlp.r67 167,178,821 9C4AC695

Total size: 23,967,178,821
Archived files
7. Q and A.mp4 [8e942175fab8a6a3] 31,257,561 775894E2
8. Quiz Solution.mp4 [4e8b1edc6b24491] 48,780,532 4880F677
9. Thanks for your support!!.mp4 [a7d351a39a06ef8e] 26,209,371 43EE3001
10. Arithmetic and Assignment Operators.mp4 [84b81775d2504e82] 81,828,716 8EB2A0A3
11. Comparison, Logical, and Bitwise Operators.mp4 [3022752c279a274d] 65,439,050 8F5D0501
12. Identity and Membership Operators.mp4 [74fbb62cc9fe6df1] 41,126,865 C15398CC
13. Quiz Solution.mp4 [43ae65d4d6b0f966] 35,875,844 F0A916C1
14. String Formatting.mp4 [10bf092c4f22e101] 53,845,267 035F9D5A
15. String Methods.mp4 [427d8cc62365fcb3] 45,390,299 1004E212
16. User Input.mp4 [6b9c010095c2b344] 43,032,519 603CBD37
17. Quiz Solution.mp4 [dea98561cdb9d087] 55,685,505 7A4FD2F9
18. If, elif, and else.mp4 [a4cd8c78dc5a464] 69,106,291 FDDC0CEA
19. For and While.mp4 [5fbf7c46bbdb954] 55,644,563 7E92D879
20. Break and Continue.mp4 [568fbd939cf15d4] 42,701,676 F678F0DF
21. Quiz Solution.mp4 [3d2013f9b5db7b16] 51,424,348 EA46E545
22. Differences between Lists and Tuples.mp4 [55aef82094db486] 51,018,793 9FEBA9AE
23. Operations on Lists.mp4 [2c56e6bd41e5bc96] 46,555,237 A2D704E3
24. Operations on Tuples.mp4 [5fa8c6243c4a6195] 28,769,309 C4B7930A
25. Quiz Solution.mp4 [f14442dee0495cdc] 38,892,134 B1842E69
26. Introduction to Dictionaries.mp4 [e807e987c7fb6851] 70,077,260 00B07134
27. Operations on Dictionaries.mp4 [3eaca8c495547d2d] 39,304,725 165FE39C
28. Nested Dictionaries.mp4 [e8e1a85ddfc2d5e5] 63,490,109 8161B25A
29. Introduction to Sets.mp4 [12aaffddac9b1c19] 79,157,791 7F0B3100
30. Set Operations.mp4 [a7062f774dd8c2fe] 61,433,313 A91C308F
31. Quiz Solution.mp4 [24c3923508c01d9f] 40,128,996 3D0644C4
32. Introduction to Stacks and Queues.mp4 [17a1f68da98094b8] 51,059,785 7FD90ECC
33. Implementing Stacks and Queues using Lists.mp4 [ea471abbe4020d05] 38,271,361 8557EC6C
34. Implementing Stacks and Queues using Deque.mp4 [95e6d2113005a68c] 43,616,313 6C01B86D
35. Quiz Solution.mp4 [dfc450bba264665a] 41,427,770 C432688D
36. Time Complexity.mp4 [7c0ca46724292bbc] 125,967,036 F6F5AC2F
37. Linear Search.mp4 [b7c57204a9ff50b0] 100,158,630 FA0A1924
38. Binary Search.mp4 [34f1268d950d6bb5] 114,863,291 EFB1884C
39. Bubble Sort.mp4 [a330f1b6a3baccde] 79,215,620 17A4100E
40. Insertion and Selection Sort.mp4 [d87536185258bdff] 125,828,520 F81ADB76
41. Merge Sort.mp4 [b7050d20b796d152] 121,042,999 A4CE57C7
42. Quiz Solution.mp4 [4b904564614db72b] 76,794,784 73FD28E9
43. Introduction to Functions.mp4 [ac694cfae882f1d5] 42,176,508 4C23FDCA
44. Default Parameters in Functions.mp4 [d5133b280b5cae2e] 56,578,183 6B42129C
45. Positional Arguments.mp4 [9c672d39aaac024b] 33,666,387 EDBCC505
46. Keyword Arguments.mp4 [7eece44546b369a3] 37,998,461 DAB901C9
47. Python Modules.mp4 [698907018f9c9dfa] 44,774,533 2406F9DB
48. Quiz Solution.mp4 [66e06500998c48a1] 50,011,626 574A6E41
49. Lambda Functions.mp4 [d266fe176cee9dad] 55,724,590 3EBAB1F2
50. Filter, Map, and Zip Functions.mp4 [b19b94729e89db12] 83,749,371 69F7DCC1
51. List, set, and Dictionary Comprehensions.mp4 [8e62854e8a2efb57] 57,233,784 10547D1C
52. Quiz Solution.mp4 [3b1f29924cae49e4] 42,211,436 B7C8C6B5
53. Introduction to Aggregate Functions.mp4 [24ff58c98336cfca] 32,117,630 57F22C6A
54. Introduction to Analytical Functions.mp4 [da2b035d96b85d9d] 36,367,172 2B9F4CF1
55. Quiz Solution.mp4 [fc381a3d7ae74c7b] 40,049,205 166D3316
56. Solving the Factorial Problem using Recursion.mp4 [5194ceb1a0e1299b] 58,073,802 89E54D5B
57. Solving the Fibonacci Problem using Recursion.mp4 [b870fc770060d7ef] 65,720,636 1A84849F
58. Quiz Solution.mp4 [ba81c01fb7238162] 39,913,082 7A273A78
59. Introduction to Classes and Objects.mp4 [aea7d6e93222b1e1] 41,452,793 DF658F70
60. Inheritance.mp4 [ebdca6f51addaf9a] 34,069,030 97A4A6B8
61. Encapsulation.mp4 [871e6204734c41a7] 65,224,050 6D1766E9
62. Polymorphism.mp4 [1866060eaef76721] 48,499,382 986155DE
63. Quiz Solution.mp4 [544b211cf8760923] 42,431,336 529656CE
64. Introduction to datetime.mp4 [236df441fd28896c] 39,312,160 2C64CEE6
65. The date and time class.mp4 [7297c9c5b92ed605] 35,180,613 EF159554
66. The datetime class.mp4 [32f8bfd31f1daef8] 23,666,507 98AF8B8A
67. The timedelta class.mp4 [53d8a45271aa1ca6] 20,301,544 6CFA662B
68. Quiz Solution.mp4 [720cfb3ac1ed5f83] 46,215,361 A89305FF
69. Meta Characters for Regular Expressions.mp4 [67799af0f78b61e5] 77,622,740 C7597748
70. Built-in Functions for Regular Expressions.mp4 [d4a0291e122e0e81] 39,397,414 B48F031C
71. Special Characters for Regular Expressions.mp4 [39cf9d6194a06c] 42,908,506 1AE68303
72. Sets for Regular Expressions.mp4 [3ba428735d7fc723] 58,861,384 44D1C6ED
73. Quiz Solution.mp4 [54c7445094026f0e] 34,414,006 A190209C
74. Array Creation using Numpy.mp4 [332510b5fb12fe50] 53,383,707 EB8EEBAB
75. Mathematical Operations using Numpy.mp4 [db8ed967d291a1e4] 38,209,838 97C86CB8
76. Built-in Functions in Numpy.mp4 [807fa6fc8989da91] 41,929,973 0C7EB070
77. Quiz Solution.mp4 [47bc87fa8f6e051d] 60,400,939 D89DE99E
78. Reading Datasets using Pandas.mp4 [2bfbfeb58445740b] 68,946,606 5AC029D6
79. Plotting Data in Pandas.mp4 [326a7817ee68eefd] 37,480,556 64970E13
80. Indexing, Selecting, and Filtering Data using Pandas.mp4 [4a4f27ddc9e7436] 72,268,554 20F3B41B
81. Merging and Concatenating DataFrames.mp4 [a97de41a9bf7a357] 80,294,053 2C33A7C7
82. Lambda, Map, and Apply Functions.mp4 [35439b11334c98ce] 39,009,360 AA9CB7E4
83. Quiz Solution.mp4 [fa6a915961f184e7] 57,366,846 BC4B2C12
84. Causes and Impact of Missing Values.mp4 [9352cb4398c1c521] 67,501,391 9E9203C7
85. Types of Missing Values.mp4 [a9352777a3a1e3e5] 64,819,501 BAA98DC1
86. When should we delete the Missing values.mp4 [30305e792ae344c5] 83,482,840 2E5EA483
87. Imputing the Missing Values using the Business Logic.mp4 [3873370a56c5fe74] 77,503,805 8EAABCED
88. Imputing Missing Values using MeanMedianMode.mp4 [d3fd63ad187e33e9] 58,674,759 1ACC5910
89. Imputing Missing Values in a real-time scenario.mp4 [903e1ef20aec93a8] 86,563,755 77EABA5D
90. Quiz Solution.mp4 [a53544b493da3520] 51,548,936 31106C8F
91. How Outliers can be harmful for Machine Learning Models.mp4 [3d637a822439d55b] 72,389,541 7C11C602
92. Finding out Outliers from the Data.mp4 [a379ced321045ab2] 66,308,856 8B14ED7B
93. Using Winsorization to deal with Outliers.mp4 [6c544eb86f0ee604] 53,003,269 653D0261
94. Deleting and Capping the Outliers.mp4 [393ea1c831da0439] 63,706,493 AF5B368D
95. Dealing with Outliers in a real-world scenario.mp4 [9899fd47ff2f55d8] 53,370,599 ADD80DE0
96. Quiz Solution.mp4 [de61321cb189a11e] 58,799,631 C3FC28CF
97. Introduction to reindex, set_index, reset_index, and sort_index Functions.mp4 [51f850e0b33eac04] 46,857,525 CF41D8FA
98. Introduction to Replace and Droplevel Function.mp4 [a4981bce87ba4b13] 34,568,065 FB2502D9
99. Introduction to Split and Strip Function.mp4 [564476a060d40872] 39,648,828 BD7F72EA
100. Introduction to Stack, and Unstack Functions.mp4 [5738bb7747abaf8] 26,609,231 B6693424
101. Introduction to Melt, Explode, and Squeeze Functions.mp4 [2132f3f6d5ba23e8] 43,385,073 7D64012F
102. Data Cleaning on Big Mart Dataset.mp4 [7d1579a2e0f0bf8c] 40,153,977 CED03FD4
103. Data Cleaning on Movie Dataset.mp4 [cb648d0988e53355] 39,105,796 58A3AED1
104. Data Cleaning on Melbourne Housing Dataset.mp4 [e2ea5d62fbf92725] 44,177,088 F3740C93
105. Data Cleaning on Naukri Dataset.mp4 [75075590b745616c] 111,396,703 D9CD48A5
106. Univariate Analysis.mp4 [563e05f3d0627ea4] 59,818,099 7555FD9C
107. Bivariate Analysis.mp4 [bdf39e330067cedb] 47,179,548 2AAB4067
108. Multivariate Analysis.mp4 [951e8307f7959c83] 74,283,884 59A2A859
109. Quiz Solution.mp4 [c55e23e260bcbcee] 49,368,882 4F0F3DAE
110. Scatter Plots.mp4 [6a93eb12df6c08a4] 47,344,092 1C5826F2
111. Charts with Colorscale.mp4 [7d08e2f3b63804b3] 33,350,515 661FD1D8
112. Bar, Line, and Area Charts.mp4 [18d1f522bd76ac07] 50,892,539 4FE2E728
113. Facet Grids.mp4 [8bca504a711b8237] 39,759,518 E0429301
114. Statistical Charts.mp4 [983109c15817b3d1] 40,237,804 B025ECB6
115. Polar Charts.mp4 [f68892f1efdf5de5] 30,717,264 89AC6CE0
116. Subplots.mp4 [24522cc17a29a003] 36,483,871 DCF90F03
117. 3D Charts.mp4 [f2f5a1e5f1e3c75c] 25,757,819 A7E8AE57
118. Waffle Charts.mp4 [d2ad66d27d8e713d] 30,774,895 ADBC4680
119. Maps.mp4 [6b8e10f8adee8b68] 32,207,114 951A6E38
120. Quiz Solution.mp4 [4f01854b1db38ed7] 51,203,451 9180639A
121. Animation with Bubbleplot.mp4 [d84ab1aa759e6caf] 50,099,712 33A9B498
122. Animation with Facets.mp4 [d6c673a3c4f5e33f] 28,005,400 611BE337
123. Animation with Scatter Maps.mp4 [bb4df704fecaaf92] 23,752,635 D37FA75D
124. Animation with Choropleth Maps.mp4 [a7ad21616bd74f97] 32,053,825 1141FEDA
125. Quiz Solution.mp4 [80dadb718ed42030] 36,260,866 7874B8CA
126. Introduction to Ipywidgets.mp4 [b5ca6179af933c0e] 40,432,912 5005E631
127. Interactive Univariate Analysis.mp4 [557c44e6d8c2b3f2] 31,330,586 7796DDF6
128. Interactive Bivariate Analysis.mp4 [32a0f911060231a9] 35,506,388 79BB3326
129. Interactive Multivariate Analysis.mp4 [61b0cfba1469185d] 30,591,373 256E9D48
130. Quiz Solution.mp4 [a5b0be5e59450258] 56,430,603 D493F8BE
131. Sunburst Charts.mp4 [f38591287f511f36] 34,753,408 C1CEC28B
132. Parallel Co-ordinate Charts.mp4 [5517e77dc83765f0] 24,077,459 BDB4AA28
133. Funnel Charts.mp4 [e682075e0ed76c89] 41,040,544 CD4AE02B
134. Gantt Charts.mp4 [2cc9c6e502a3a830] 26,299,130 6E49730B
135. Ternary Charts.mp4 [9042e96549bc6c2c] 21,344,716 1F6BFFB1
136. Tree Maps.mp4 [27009c7f9171f888] 22,488,305 0C421EDB
137. Network Charts.mp4 [9830c8ced12b1fdb] 41,666,191 7CAD3033
138. Quiz Solution.mp4 [a19e4bf5a2031dab] 40,379,087 3E345D74
139. Introduction to Feature Engineering.mp4 [e34d88fc3aa5c0be] 62,944,910 8CA8FFC1
140. Removing Unnecessary Columns.mp4 [aca6b94a3f55383b] 59,621,856 25CCA4CF
141. Decomposing Time and Date Features.mp4 [677975e7034788f8] 40,151,106 D99DACFB
142. Decomposing Categorical Features.mp4 [904a0f6dc6fead15] 40,125,071 4C3CF0C1
143. Binning Numerical Features.mp4 [7fd101378ff889b] 62,234,196 F06A0C62
144. Aggregating Features.mp4 [cf7c4d0795661de7] 59,628,442 E47F4F0F
145. Introduction to Feature Engineering on Text Data.mp4 [f79d639f2d5e71dc] 35,462,283 27078C96
146. Reading and Summarizing the Text.mp4 [51b6a0c5aa5079e5] 31,948,588 8C5319CC
147. Finding the Length, Polarity and Subjectivity.mp4 [26df92ef74ff862c] 76,554,643 D1939473
148. Finding the Words, Characters, and Punctuation Count.mp4 [3daffe2d4c8e034] 38,044,396 A0A70658
149. Counting Nouns and Verbs in the Text.mp4 [b577b0de00c3d471] 32,944,119 CDDC2D46
150. Counting Adjectives, Adverb, and Pronouns.mp4 [377b606c7efa9ccd] 24,858,694 AA52CCBA
151. Introduction to Assign and Update Functions.mp4 [80a746ac3c81546d] 37,885,285 431442CB
152. Introduction to at_time and between_time Functions.mp4 [7438058eb98f33cc] 31,692,591 A36D654C
153. Introduction to nlargest and nsmallest Functions.mp4 [7792cd4b09fe45f6] 37,032,024 E4B874F5
154. Introduction to Expanding Function.mp4 [9bafcf29116138] 29,797,512 B6226901
155. Introduction to Cumulative Functions.mp4 [822d6be4dbdee180] 32,614,798 A0D0D2E2
156. Quiz Solution.mp4 [99b73794b157e196] 53,693,890 FC5A1EF1
157. Feature Engineering on Employee Data.mp4 [b795688f81aece0e] 59,914,976 E5AFCAEC
158. Feature Engineering on FIFA Data.mp4 [9966b03a1649a1ec] 46,922,732 518663C6
159. Feature Engineering on Hotel Reviews.mp4 [d000729997aae13d] 36,753,689 6AD196FE
160. Feature Engineering on Marketing Data.mp4 [697edd5a3b567403] 61,425,017 56C1F112
161. Feature Engineering on Titanic Data.mp4 [86944b43d521102e] 52,030,976 1A743D41
162. Quiz Solution.mp4 [694a692ec77ecafa] 67,993,764 D34DEC5A
163. Types of Encoding Techniques.mp4 [4ab869337a0906ea] 63,842,096 89D294AD
164. Label Encoding.mp4 [3632d3c86da9f330] 35,167,157 D84B87B0
165. Feature Mapping for Ordinal Variables.mp4 [d623b4ffa37d1357] 30,422,479 DC5F44BA
166. OneHot Encoding.mp4 [cca14b463a3bc424] 36,250,150 779C655F
167. Binary and BaseN Encoding.mp4 [d428b9a1a53acefd] 34,827,012 B476C38D
168. Mean and Frequency Encoding.mp4 [320147e85970c8b8] 23,939,478 CB0EC917
169. Quiz Solution.mp4 [c274c56f9b3b65e5] 54,405,458 33E76B48
170. Introduction to Skewness and Normal Distribution.mp4 [3265f4fba2fb2336] 39,376,254 70D8DFC6
171. Square and Cube Root Transformation.mp4 [55b4f8432d8f62cf] 41,328,480 B7851B1C
172. Log transformation.mp4 [40e02bd4933525c0] 29,371,022 B4438FB1
173. BoxCox transformation.mp4 [958a891b34c203d2] 34,092,578 927994A4
174. Quiz Solution.mp4 [60f2b9f741c4a04e] 59,415,365 2B51ABBB
175. Train, Test and Validation Split.mp4 [b29215ffbb6fbc91] 46,380,478 406893C6
176. Standardization and Normalization.mp4 [19f42d3b3702bbaa] 41,631,191 3854D0C7
177. Quiz Solution.mp4 [82bad005bf8d3e38] 60,278,045 8A9DFE31
178. Introduction to Linear Regression.mp4 [736093c50163601] 85,153,619 734D937D
179. Implementing Linear Regression using Sklearn.mp4 [25f6eecc07f678f7] 77,007,823 938B5615
180. Feature Selection using RFECV.mp4 [beefd23c3b2312f3] 90,088,133 5A279968
181. Data Transformation with Linear Regression.mp4 [e23963c87b854331] 60,299,944 FFE6A02B
182. Applying Cross Validation.mp4 [efba02a525ad929b] 110,741,324 30D15D4C
183. Analyzing the performance of Regression models.mp4 [d20eb0183a503e02] 114,255,376 5C039FB6
184. R2 score and adjusted R2 score intuition.mp4 [c4bf1c02e50498a6] 112,223,151 2762A042
185. MAE, RMSE, R2 and Adjusted R2 in code.mp4 [a5a569e0f57c3219] 51,373,033 5199A6CC
186. Applying real time prediction on our model.mp4 [dc22a0070f7040fb] 112,823,242 456737DF
187. Industry relevance of linear regression.mp4 [29e5c65461d1daf] 52,290,450 4126222C
188. Quiz Solution.mp4 [8c8e83c10af1a3c4] 79,277,282 8A289C61
189. Introduction to Logistic Regression.mp4 [f79b8de90a41dd79] 111,558,476 8D752B9D
190. Implementing Logistic Regression using Sklearn.mp4 [ced3097e95498617] 91,231,497 26EF7FB3
191. Feature Selection using RFECV.mp4 [9b233b5181cfcb2a] 44,184,666 3A7BCCFC
192. Hyperparameter tuning using Grid search.mp4 [cf9899f4f1f37a2f] 61,597,339 FA91DBDE
193. Applying Cross Validation.mp4 [76db26bfc40eccf7] 59,471,741 E521376B
194. How to analyze performance of a classification model.mp4 [4550273848fc48d1] 153,269,414 B1DE8AD7
195. Using accuracy score to analyze the performance of model.mp4 [71f9a64bdc8b5ba0] 58,222,941 7986F9C9
196. Using ROC-AUC score to analyze the performance of model.mp4 [48b8dabe86f24076] 154,795,999 EF6F27D6
197. Real time prediction using logistic regression.mp4 [db8fe7da3ac0a266] 78,269,246 6A54ABDA
198. Industry Relevance of Logistic Regression.mp4 [eb12b2a9ad0c9374] 62,785,685 51F0D374
199. Quiz Solution.mp4 [818a87797caa603d] 56,332,318 83641E0C
200. Introduction to Support Vector machines.mp4 [7d3982f47fa4feb3] 113,413,633 CC60A8AB
201. The kermel trick for support vector machine.mp4 [daf9d57daa5d252c] 73,787,471 95D764E6
202. Implementing support vector machine using sklearn.mp4 [7730447fdad61de9] 70,697,355 0B13DE80
203. Introduction to K nearest neighbors.mp4 [ff826a5297bad0b8] 109,389,446 B98EE5E9
204. Implementing KNN using Sklearn.mp4 [4ffa977a14f308b1] 34,831,031 CF94540A
205. Introduction to Naive Bayes.mp4 [cfe354e57ce540f7] 183,209,446 00251FD6
206. Implementing Naive Bayes using sklearn.mp4 [e3f511d2106e1308] 64,956,133 5B5FCDF9
207. When should we apply SVM, KNN and Naive bayes.mp4 [bf65497f37be678c] 73,144,177 1C84D478
208. Quiz Solution.mp4 [2570753b7fe3f33] 68,325,894 D0C02D72
209. Intuition for decision trees.mp4 [40252c622e7102f6] 85,963,435 10488CC7
210. Attribute selection method- Gini Index and Entropy.mp4 [5eaf938432fcdb9c] 229,272,773 3A783D1D
211. Advantages and Issues with Decision trees.mp4 [edaca9e1517de3f] 55,955,061 1621F1D3
212. Implementing Decision tree using Sklearn.mp4 [12642e9ab8562740] 37,543,185 FDBE5DF0
213. Understanding the concept of Bagging.mp4 [c9ce5262126c1f68] 69,184,200 91E72DBE
214. Introduction to Random forest.mp4 [2fd303122f1f3090] 71,391,094 3A3E5D79
215. Understanding the parameters of Random forest.mp4 [f63f1c904d9376e3] 56,259,443 37928546
216. Implementing random forest using Sklearn.mp4 [5a619df03cf84f9f] 50,196,523 E31D1914
217. Understading the concept of boosting.mp4 [c257487234a838b2] 59,909,971 0FD159AF
218. Intuition for Adaboost and Gradient Boosting.mp4 [e6ece110c26f9c16] 160,732,425 5F0A9A87
219. Implementing AdaBoost using sklearn.mp4 [49ea1c7a03e2013b] 95,223,417 2DF11FB9
220. Implementing Gradient Boosting using sklearn.mp4 [36f5577eb68c96f9] 70,168,408 9CE4E780
221. Getting High level intuition for XGBoost.mp4 [6fad60b6789d8e72] 43,057,008 EE0BDD3E
222. Implementing XGBoost using sklearn.mp4 [60128d1f84e0f23b] 68,308,081 AF948C5E
223. Introudction to Ensembling techniques.mp4 [ac39067486d2a296] 140,520,618 7B8F84B0
224. Why Imbalanced Data needs extra attention.mp4 [d5948c690ad207ee] 56,210,409 38C255DE
225. Using Resampling Techniques to Balance the Data.mp4 [f6dab98e3187eaff] 73,970,352 FB91952E
226. Solving a Real World Problem.mp4 [3a2d06cb0e1b8728] 59,737,033 6F1CA5B1
227. Preparing the Data for Predictive Modelling.mp4 [f333e76f5f72ed81] 60,729,922 7B4F6A1E
228. Applying Logistic Regression using Sklearn.mp4 [21e3cdf5cad2b8cb] 74,583,563 74277E28
229. Applying Random Forest using Sklearn.mp4 [1acb7e0499e48c2b] 44,721,745 1B3ED4E5
230. Quiz Solution.mp4 [7220f8fd9e73f075] 70,060,062 A2E6EE2A
231. Implementing Random Over Sampling using Imblearn.mp4 [176020bd53393c91] 57,044,651 7C26118F
232. Implementing Random Under Sampling using Imblearn.mp4 [2d8aecff119fc12f] 60,333,749 2CC470A7
233. Implementing Synthetic Sampling using Imblearn.mp4 [fa7931b81b1e2f77] 60,230,039 69918CFD
234. Implementing Neighbors based Sampling using Imblearn.mp4 [83bcce772471d41c] 67,116,778 6B317ED2
235. Combination of Oversampling and Under sampling.mp4 [5a07138fec1f492f] 58,457,615 D4A4A0A1
236. Implementing Ensemble Models for Imbalanced Data.mp4 [60d865ad3f09df12] 57,536,827 BC8C3D22
237. Introduction to XG Boost for Imbalanced Data.mp4 [349c6513d7596e40] 45,642,331 1938D826
238. Comparing the Results.mp4 [86024b844abdd8a7] 43,515,138 6DDE7FF4
239. Quiz Solution on Imbalanced Machine Learning.mp4 [784272af0578e418] 39,688,524 1F799B58
240. Introduction to Clustering.mp4 [2b60dc66eac6bfdc] 60,639,012 141DF085
241. Types of Clustering.mp4 [707111473af98402] 68,340,840 EB48A377
242. Applications of Clustering.mp4 [e5b70db7a508ea01] 58,657,002 85F5B16E
243. Using the Elbow Method for Choosing the Best Value for K.mp4 [4cb263d11a7fdd53] 70,304,037 0E2A97BC
244. Introduction to K Means Clustering.mp4 [2c2b5b75f33ec423] 51,669,420 BA55B961
245. Solving a Real World Problem.mp4 [c9dab8309dd2cf82] 74,452,012 075DA866
246. Implementing K Means on the Mall Dataset.mp4 [24d90179af22b0b2] 75,036,775 75E766DF
247. Using Silhouette Score to analyze the clusters.mp4 [d6e0a0b26e4df1ee] 101,013,987 BA2FF526
248. Clustering Multiple Dimensions.mp4 [37d6f4bf09c79409] 52,428,715 C9FCAC11
249. Introduction to Hierarchical Clustering.mp4 [ed1f5e9e562ea1c5] 92,782,842 500DDF43
250. Introduction to Dendrograms.mp4 [d4a76f64e2e139c1] 43,795,960 5A6803C3
251. Implementing Hierarchical Clustering.mp4 [7cb297b0202a80bb] 54,886,925 3B310125
252. Introduction to DBSCAN Clustering.mp4 [ddbb92003bcaeb57] 79,294,681 AD21BBE4
253. Implementing DBSCAN Clustering.mp4 [f6af96e5ee67a3ab] 50,189,372 95FAE262
254. Why High Dimensional Datasets are a Problem.mp4 [57c12635a15db4ab] 83,061,524 E1F2F0B5
255. Methods to solve the problem of High Dimensionality.mp4 [f50fcc0c131626c1] 59,927,217 FA6CEF8E
256. Solving a Real World Problem.mp4 [36b2cba2878a7676] 103,616,204 F3D8BBFA
257. Introduction to Correlation using Heatmap.mp4 [1f4c6ef30cc6cd23] 74,866,230 72CFF483
258. Removing Highly Correlated Columns using Correlation.mp4 [e5943f902a2dcac3] 51,230,375 C80A5384
259. Introduction to Variance Inflation Filtering.mp4 [e34bc92fb4757829] 51,018,565 1D8BCA55
260. Implementing VIF using statsmodel.mp4 [c79abf91074de424] 50,149,351 C78D6938
261. Introduction to Recursive Feature Selection.mp4 [87f5cbd1b24a5a6e] 59,363,077 F7023DE1
262. Implementing Recursive Feature Selection.mp4 [974f577136d2f6ea] 53,381,137 F895BC6E
263. Introduction the Boruta Algorithm.mp4 [b89d6d2541003947] 55,020,344 45A214AD
264. Implementing the Boruta Algorithm.mp4 [d8ad0f57c14775b6] 45,295,948 2A2721E5
265. Introduction to Principal Component Analysis.mp4 [cb6d76cd75cdb607] 77,364,519 CB6E0E8B
266. Implementing PCA.mp4 [ee577aaa093d8125] 58,209,970 000A9023
267. Introduction to t-SNE.mp4 [34c2e695ee79dfb5] 85,211,804 863D2B40
268. Implementing t-SNE.mp4 [bf16efebac26bd17] 37,852,769 5470BCEA
269. Introduction to Linear Discriminant Analysis.mp4 [339384eb843fed4e] 51,266,078 C6FB1BEC
270. Implementing LDA.mp4 [54144c90377740a7] 38,528,582 85D2E9AD
271. Difference between PCA, t-SNE, and LDA.mp4 [834e17b16ad4148f] 67,926,929 F2EC5F32
272. Introduction to Recommender systems.mp4 [d730a400dcb98c2b] 42,488,167 7679256F
273. What are it's Use Cases.mp4 [8fe6302a4adf636d] 47,242,851 31C4FF82
274. Types of Recommender Systems.mp4 [124fb2775f3d7a47] 59,275,161 2CE5EA31
275. Evaluating Recommender Systems.mp4 [531247bbd93a5dd6] 55,726,801 C2078A5B
276. Introduction to Content Based Filtering.mp4 [39872b62abfd5542] 61,860,589 53E41794
277. Preprocessing the Data for Content Based Filtering.mp4 [d907de4caed8996a] 80,392,036 7E00DDA7
278. Filtering Movies Based on Genres.mp4 [d18cbe5dc3184c2a] 61,587,030 B9B8E840
279. Introduction to Transactional Encoder.mp4 [b6970698275be67f] 66,461,516 A5B024B5
280. Recommending Similar Movies to Watch.mp4 [b26c6bcd4481843b] 58,747,362 524CD8C3
281. Quiz Solution.mp4 [e2a5458cc43cc703] 50,852,855 8CCFBB27
282. Introduction to Collaborative Filtering.mp4 [3a474609bbd022dc] 84,777,178 0290B418
283. Preprocessing the Data for Collaborative Filtering.mp4 [250c67091bee019f] 75,897,971 78755542
284. Implementation of User Based Collaborative Filtering.mp4 [1b7cff603055f623] 65,155,063 92EDFA32
285. Interpreting the Results obtained from User Based Filtering.mp4 [d66126aa02d2a49c] 66,680,052 32740CBA
286. Implementation of Item Based Collaborative Filtering.mp4 [278c0886885d4504] 66,630,541 4663C351
287. Quiz Solution.mp4 [c7c2919e22ec1c25] 58,316,583 ED1488C2
288. Introduction to SVD.mp4 [1b2f906767237f46] 117,464,622 D7951226
289. Implementing SVD using Surprise.mp4 [7a048ea319d5dffa] 42,594,411 AB1901BE
290. Interpreting Results Obtained from SVD.mp4 [464c77183e49bf24] 48,230,103 0C5F0F60
291. Comparing Content, and Collaborative Based Filtering.mp4 [f0865e28762454f1] 64,994,126 FEA66F95
292. Quiz Solution.mp4 [dd504fb8e5835364] 50,261,587 76CE232F
293. Case Study for Netflix.mp4 [411f04870244f6c3] 59,107,796 1FE78996
294. Case Study for Youtube.mp4 [92a18e190f10539e] 60,951,107 A2E567A1
295. What is a Time Series Data.mp4 [63d7545aff55c8fb] 36,596,736 EDAD7003
296. Types of Forecasting.mp4 [83b9ff87a546edb4] 47,496,121 B95B2FBB
297. Regression Vs Time Series.mp4 [f3bf296d3b4431f1] 86,969,133 B2595D6A
298. Applications of Time Series.mp4 [504951aa1edbbbcd] 49,574,765 72C00905
299. Components of Time Series.mp4 [2fc3c17d7fbb9791] 54,470,246 10081E3B
300. Quiz Solution.mp4 [6cc24d19b06ab80b] 61,767,739 EB96B08A
301. Getting Time Series data.mp4 [b35bc27cb3fa682c] 74,525,439 ADC57E41
302. Handling Missing Values.mp4 [cc59052368eb5d1a] 122,120,115 E28659C5
303. Handling Outlier Values.mp4 [3c64d8b622f27574] 67,554,633 95060632
304. Time Series Decomposition.mp4 [b58019ef975ac174] 94,293,411 1109CE01
305. Splitting Time Series Data.mp4 [36e330a67fe9629f] 66,584,470 97BA1427
306. Quiz Solution.mp4 [83fd539f98be8ba9] 61,589,948 AD96A2C2
307. Basic Forecasting Techniques.mp4 [b2d690972fc459dc] 58,174,176 686AE018
308. Metrics for Time series Forecasting.mp4 [ee78b9cda8ea8e77] 82,512,701 18EF81A6
309. Simple Moving Averages.mp4 [3cfdb816bb4a5f1c] 52,548,971 A70082FB
310. Simple Exponential Smoothing.mp4 [322a27b9581fd9b9] 69,857,358 3594C52C
311. Holt and Holt Winter Exponential Smoothing.mp4 [df5b4ef08ef6f12c] 76,678,712 F6D8AB83
312. Quiz Solution.mp4 [7456af06dccaadcd] 45,183,706 56CA30AE
313. Introduction to Auto Regressive Models.mp4 [25c20f6f4571f1b2] 36,381,643 B99FBA69
314. Checking for Stationarity Part 1.mp4 [109ee4c8dcb41581] 68,150,471 3A12A2AC
315. Checking for Stationarity using Statistical Methods Part 2.mp4 [4d35d6f0f5e7aca8] 79,109,269 C9C1A5DD
316. Checking for Stationary Implementation.mp4 [4b2a64e0aa428c93] 39,940,372 63450064
317. Converting Non-Stationary Series into Stationary.mp4 [e2e955d10d52d2c] 50,421,446 294560EE
318. Converting Non-Stationary Series into Stationary Implementation.mp4 [f65e9405acd6545e] 50,501,036 4E7C12AC
319. Auto Correlation and Partial Correlation.mp4 [4ef4e37208200fd4] 80,567,992 CBD160D4
320. Auto Correlation and Partial Correlation Implementation.mp4 [c5e9b645a88fc92c] 40,349,275 3EBDC106
321. The Simple Auto Regressive Model.mp4 [27a2190da9aa94ce] 66,494,345 18140073
322. The Simple Auto Regressive Model Implementation.mp4 [6075a9cefb18b64a] 68,123,145 85F30E93
323. Moving Average Model.mp4 [d60ecb0739c37e17] 37,001,185 22AC14EF
324. Moving Average Model Implementation.mp4 [d431a58d42dd32b5] 24,346,900 2935B1DE
325. Quiz Solution.mp4 [19e8c2ec599f3205] 40,152,239 6A0F22E9
326. Understanding ARMA Model.mp4 [81eb045505e0eb6f] 59,538,023 3CF44E7A
327. Implementing ARMA Model.mp4 [55466cad7a55a2f0] 50,554,548 2F5D48BE
328. Understanding ARIMA Model.mp4 [300c5a0426eb1ffa] 58,577,437 0F9EFDBF
329. Implementing ARIMA Model.mp4 [6caace63a22b0648] 34,797,821 B1A20A2F
330. Understanding SARIMA Model.mp4 [8e7251524a2abe70] 73,335,140 598E7F01
331. Implementing SARIMA Model.mp4 [84764bb7740937d] 39,986,538 73561C5E
332. Quiz Solution.mp4 [57ec589632f067dc] 45,534,455 ACFADCF9
333. Understanding ARIMAX Model.mp4 [e86188fffdfc03bd] 69,726,328 AF642371
334. Implementing ARIMAX Model.mp4 [999098d3fd309817] 46,919,044 74F02471
335. Understanding SARIMAX Model.mp4 [8c6fb464f517a96] 45,970,410 B9BE71A8
336. Implementing SARIMAX Model.mp4 [92331929dde2b99c] 62,877,092 90C7BA0E
337. Quiz Solution.mp4 [b221b87dacb361ef] 35,857,059 6C35A19C
338. How to Choose the Right Model.mp4 [ab0a3e954885b984] 36,840,197 BB4B49B2
339. Choosing the Right for Model Smaller Datasets.mp4 [955fe3b879ce74a1] 54,834,392 817F39B3
340. Choosing the Right Model for Larger Datasets.mp4 [b7ddc8e605376489] 38,064,586 EC7A62DA
341. Best Practices while Choosing a Time series Model..mp4 [cd3ba3fcd2e43e07] 45,108,426 7ADA1AD6
342. Quiz Solution.mp4 [b9445ec14a7cc02b] 49,050,563 B7F3F90A
343. Why do we Evaluate Performance.mp4 [4f6844f00d0611c4] 33,314,304 529551DB
344. Mean Forecast Error.mp4 [93d9b8d7f4e7fa2] 55,484,131 7171A6FE
345. Mean Absolute Error.mp4 [f3ba653c839fd5c0] 37,278,638 832AE54D
346. Mean Absolute Percentage Error.mp4 [7da366f1089d222b] 31,191,683 3BE3D411
347. Root Mean Squared Error.mp4 [8fb344a30900ea02] 30,764,631 1DBBD60B
348. Quiz Solution.mp4 [fbcf72faea6cec9c] 48,246,392 E1647DE1
349. Setting up the Environment.mp4 [2a4ef5f092d3adf9] 43,726,903 66BB8F27
350. Understanding the Dataset.mp4 [4b2fc03f531d9d] 100,523,065 20406762
351. Understanding the Problem Statement.mp4 [5bc9e1f34c92286] 62,669,006 BE4F355C
352. Performing Descriptive Statistics.mp4 [e1885297960fc56b] 64,668,254 BE4EEBFD
353. Missing Values Treatment.mp4 [7250c2ad84c9b797] 40,535,486 36FA6B92
354. Outlier Values Treatment.mp4 [6e8f51a3a4a2019e] 44,541,341 BD0C1DD5
355. Univariate Analysis.mp4 [dd4da97c7e2afcdc] 55,715,088 CD9174D4
356. Bivariate Analysis.mp4 [ef9858073d036291] 38,957,050 ACFBF52B
357. Multivariate Analysis.mp4 [a41c93489d69740d] 41,882,801 7584089B
358. Feature Engineering.mp4 [13bd48f41cc80b35] 52,869,276 F2FEBF90
359. Categorical Encoding.mp4 [d94db905f15aebe6] 39,246,806 27B8D5A4
360. Data Processing.mp4 [a170607d052bf0a1] 70,926,688 BA8ADBAB
361. Feature Scaling.mp4 [d826886a57fb63a2] 44,318,806 18120A81
362. Predictive Modelling.mp4 [7d9141353f435514] 46,809,062 5CEC373E
363. Performance Analysis.mp4 [33bc0245a2ab0f7f] 80,911,365 A6558981
364. Improvements Possible.mp4 [f833b1b52dc4aee5] 43,893,711 CDA701E7
365. Major Takeaways from the Project.mp4 [2077a44d96dce0b6] 30,389,814 8B436762
366. Setting up the Environment.mp4 [867e8c7b4685514d] 52,542,609 C260FFB7
367. Understanding the Dataset.mp4 [c1b834ff384047d5] 109,100,636 E11CA891
368. Understanding the Problem Statement.mp4 [552af8f9677a1497] 64,789,611 ABB86C4C
369. Performing Univariate Analysis.mp4 [58ceb9ab7995a84] 94,100,637 4EBB2864
370. Performing Bivariate Analysis.mp4 [4937f40690a54cd8] 74,920,338 1943CD65
371. Performing Multivariate Analysis.mp4 [651462457f6eac0d] 90,136,437 2CDBE43F
372. Preparing the data for Modelling.mp4 [900ae1adc75bf7c5] 95,277,415 47191020
373. Applying Linear Regression Model.mp4 [fc4c298f5a4b48be] 134,295,396 250957AF
374. Applying Random Forest Model.mp4 [ca1b2a7b03116732] 57,023,777 D8F0DC37
375. Applying Gradient Boosting Model.mp4 [e9ad29bbdbff97f] 73,800,250 891437AF
376. Creating Ensembles of Models.mp4 [19fd7ebadeda1de4] 59,834,194 B1555AEA
377. Comparing Performance of these Models.mp4 [4e791d7693835c11] 38,319,394 60272B21
378. More things to Try.mp4 [7df9361ebdd86a71] 51,039,899 283CA983
379. Major Takeaways from the Project.mp4 [ccb15e97cae88fc3] 60,432,583 16267CC6
380. Understanding the Problem Statement.mp4 [9291fce403c499fb] 47,702,972 2025B78E
381. Setting up the Environment.mp4 [68f441d766ee80ef] 71,921,148 A93E2FC6
382. Understanding the Dataset.mp4 [65a9fb671be4a606] 43,116,341 F69C59E5
383. Performing Descriptive Statistics.mp4 [18d93e58f8ac9ef7] 78,968,093 74CC4A8D
384. Data Cleaning.mp4 [647ec7fdc7ecf818] 70,217,339 F9AD6A75
385. Univariate Data Visualizations.mp4 [8398794fbb325f3a] 68,329,294 CD08C589
386. Bivariate Data Analysis.mp4 [df4c4168adbd3a3a] 73,614,400 6093590B
387. Preparing the Data for Modelling.mp4 [2e5bce3ab3c86cbb] 44,900,939 2B24AA40
388. Applying Resampling.mp4 [d9bbe6f4125c6518] 59,719,569 55A2968E
389. Applying Logistic Regression.mp4 [1db69df8b910ee40] 54,923,222 CE7F849C
390. Applying Gradient Boosting.mp4 [b51d33df5a3e4850] 40,482,202 4D1D1749
391. Summary.mp4 [140ae7b0a9717f] 46,317,936 C33B2D44
392. Setting up the Environment.mp4 [2456687c63b66d7a] 48,687,057 E84D48FE
393. Understanding the Dataset.mp4 [f1d44bdbbb21b6f8] 57,864,348 BAF73203
394. Understanding the Problem Statement.mp4 [83cffe9a01488e1a] 37,106,008 BCD2D8EF
395. Performing Descriptive Statistics.mp4 [a6233e1f8232dac1] 77,145,502 76909D9C
396. Analyzing Agricultural Conditions.mp4 [1a1b47d66f99ec22] 41,068,067 07358A24
397. Clustering Similar Crops.mp4 [5b13ad3cb40f6148] 66,697,620 E2022371
398. Visualizing the Hidden Patterns.mp4 [da0fe999c8673bf] 29,125,491 F3206276
399. Predictive Modelling.mp4 [db41c1c4453d965d] 42,329,245 C9A19C9E
400. Real Time Predictions.mp4 [c51a7535493bb06b] 28,994,458 ADE9FF4C
401. Summarizing the Key-Points.mp4 [1d2da6676e1c4ce7] 42,406,921 425AD5D7
402. Understanding the Problem Statement.mp4 [4f8863e1f85eefe4] 61,608,713 779555EE
403. Setting up the Environment.mp4 [65c6f8038dff9f8d] 34,585,878 CB9FDF11
404. Data Analysis and Visualization.mp4 [1d0fc3ab8610876b] 81,498,243 C6EF98E1
405. KMeans Clustering Analysis.mp4 [61e05977bdd0ddfb] 64,775,068 5119BC64
406. Applying Hierarchical Clustering.mp4 [7f2e505d7a35a4d1] 42,764,273 44FF04D1
407. Using Silhouette Score as Evaluation Metric.mp4 [d277a26f9a533cac] 38,492,113 2CD133EC
409. Major Learnings from the projects.mp4 [480c6bf2fe2765bb] 42,777,512 71B0F94F
410. Conclusion.mp4 [a2cfd4d13d959ab1] 47,658,771 30565E01
1. Why should you learn Python.mp4 [26f42b7dfe868173] 135,238,685 E2F8361F
2. Installing Python and Jupyter Notebook.mp4 [a55a84c8f56d113b] 99,944,238 83E0E524
3. Understanding the Interface of Jupyter Notebook.mp4 [48caf365350275a4] 73,739,706 8007B088
4. Naming Convention for Variables.mp4 [fe8964ee602fc45b] 99,544,360 BE9C07E4
5. Built in Data Types and Type Casting.mp4 [d6b0555128681b73] 144,218,217 3B62D8AC
6. Scope of Variables.mp4 [cb886c831c84302] 69,712,890 F9352D4C

Total size: 23,967,140,194
RAR Recovery
Not Present
Labels UNKNOWN