"An archive is a dump without the seagulls." ―Shoe, 1990
  • HaArD
  • 2023-01-30 19:15:06
  • Unknown
You were redirected to this page (UDEMY.Natural.Language.Processing.Real.World.Projects.in.Python.BOOKWARE-iLEARN)

RELEASE >

ReScene version pyReScene Auto 0.7 iLEARN File size CRC
Download
12,319
Stored files
202 5D341DBC
1,170 252800B2
RAR-files
ilearn-nlprwpip.rar 50,000,000 775B001F
ilearn-nlprwpip.r00 50,000,000 2538A3A7
ilearn-nlprwpip.r01 50,000,000 71A04B99
ilearn-nlprwpip.r02 50,000,000 73A1643A
ilearn-nlprwpip.r03 50,000,000 F6618FA4
ilearn-nlprwpip.r04 50,000,000 911D3BDE
ilearn-nlprwpip.r05 50,000,000 DA8F7B29
ilearn-nlprwpip.r06 50,000,000 53658E6C
ilearn-nlprwpip.r07 50,000,000 06FBFB72
ilearn-nlprwpip.r08 50,000,000 AE339027
ilearn-nlprwpip.r09 50,000,000 122CC38C
ilearn-nlprwpip.r10 50,000,000 779C7B14
ilearn-nlprwpip.r11 50,000,000 9924F684
ilearn-nlprwpip.r12 50,000,000 AABDEACB
ilearn-nlprwpip.r13 50,000,000 FE398A12
ilearn-nlprwpip.r14 50,000,000 9EE17B88
ilearn-nlprwpip.r15 50,000,000 68F19888
ilearn-nlprwpip.r16 50,000,000 5F7B8EFD
ilearn-nlprwpip.r17 50,000,000 02F86CB7
ilearn-nlprwpip.r18 50,000,000 06513D2E
ilearn-nlprwpip.r19 50,000,000 B99A493D
ilearn-nlprwpip.r20 50,000,000 9F525762
ilearn-nlprwpip.r21 50,000,000 B99C2A71
ilearn-nlprwpip.r22 50,000,000 3A4DE01F
ilearn-nlprwpip.r23 50,000,000 334E60DB
ilearn-nlprwpip.r24 50,000,000 E9823705
ilearn-nlprwpip.r25 50,000,000 5CE6D9E1
ilearn-nlprwpip.r26 50,000,000 6AF34BF4
ilearn-nlprwpip.r27 50,000,000 DD841401
ilearn-nlprwpip.r28 50,000,000 BA95B1DA
ilearn-nlprwpip.r29 50,000,000 4E318C60
ilearn-nlprwpip.r30 50,000,000 0B9B095C
ilearn-nlprwpip.r31 50,000,000 7B38D06E
ilearn-nlprwpip.r32 50,000,000 D96B505D
ilearn-nlprwpip.r33 50,000,000 F672E07F
ilearn-nlprwpip.r34 50,000,000 ACD8AA83
ilearn-nlprwpip.r35 50,000,000 99169C08
ilearn-nlprwpip.r36 50,000,000 F0B315B9
ilearn-nlprwpip.r37 38,539,360 9E811E06

Total size: 1,938,539,360
Archived files
4. Introduction to Business Problem & Dataset.mp4 [dc098918d6e11226] 24,881,911 B51C29D7
6. Perform Data Pre-processing on Amazon Data.mp4 [e6ed231be1e3031f] 63,093,017 207C6846
7. Apply Exploratory Data Analysis on Data.mp4 [4b967cf4d160a3e5] 54,468,078 8A71D53D
8. Intuition behind Bag of Words.mp4 [c5dff0b8efd20e2b] 65,647,312 EFDE057B
9. Intuition behind Logistic Regression --part 1.mp4 [1a844f295ab485a9] 60,781,373 F49E2691
10. Intuition behind Logistic Regression --part 2.mp4 [463fcfbb168c564e] 46,292,725 9B6A7CAB
11. Apply Bag of Words on data.mp4 [3ee83ed49db8a864] 100,615,681 30C61234
12. Automate your NLP model & Machine Learning Model.mp4 [b334792496d2251d] 112,285,412 1893894F
13. Intuition behind TF-IDF --part 1.mp4 [5e0a96d081f34068] 25,986,228 89754F13
14. Intuition behind TF-IDF --part 2.mp4 [c8ad934c282b39e6] 36,269,209 07150A8F
15. Applying algorithms of NLP & Machine Learning.mp4 [41ef0ed40ba5dfb0] 61,608,196 D4938E4A
16. Data Preparation for Modelling Purpose.mp4 [70e80e60fd97ab4c] 58,291,676 9BF39DAB
17. What is Imbalance Data & how to handle it.mp4 [63a00d050f678e36] 89,699,135 16DA5146
18. Part1-- What is Cross-validation & when to use it.mp4 [38199a6848fe2f01] 43,687,861 306916DA
19. Part2-- What is Cross-validation & when to use it.mp4 [5c028116907fa8c1] 70,605,982 1FB78A60
20. Applying Techniques of Handling Imbalance Data & Cross Validation.mp4 [12c565c09ed8b800] 104,164,835 D5C0D509
21. Introduction to Business Problem & Dataset.mp4 [3d22f4baf07c52ce] 24,928,708 A99791C9
23. Data Pre-processing on Data..mp4 [7156db6978749d70] 88,122,916 9AC93550
24. Perfrom Data Wrangling & Merging.mp4 [20d424cd056caf57] 75,528,920 5E1B5A28
25. Intuition Behind Random Forest Part-1.mp4 [e82b9c70b92eba2b] 81,535,998 9414C477
26. Intuition behind Random Forest --part 2.mp4 [66c51c34f8a9aa82] 53,255,133 BEBEA886
27. Apply Bag of words and Random forest on Data.mp4 [d09dcb3305816221] 65,273,293 48679769
28. Model Evaluation...mp4 [248efead941880f2] 52,467,666 11804BB1
29. Intuition Behind Naive Bayes-Part 1.mp4 [a4c1171d442f197d] 72,374,837 8EA850EF
30. Intuition Behind Naive Bayes- Part 2.mp4 [5927b2e6cb877d3] 97,122,192 F634FC3C
31. Apply Naive Bayes on Data...mp4 [1e94a386a2fb0ba3] 38,615,551 C71C2281
32. Introduction to Business Problem & Dataset.mp4 [b7aceac727314f5] 14,363,063 9D1050F5
34. Exploring Data.mp4 [f7f0bb8f7b1c730f] 59,832,497 356E03F0
35. Apply TF-IDF on data.mp4 [36582feaf2f49e91] 63,490,857 060E344B
36. Apply Logistic Regression on Data.mp4 [1a965f34fc32799] 55,529,808 C8141013
37. Checking Accuracy of Model.mp4 [3feac5ae152b1e52] 29,572,754 9F2A1951
1. Intro To course.mp4 [b8806055f1b103dd] 20,279,427 00A912F1
2. Utilize this GOLDEN oppurtunity , QnA section !!.mp4 [70a1520f7ca74581] 9,831,922 B27ECD48
3. How to follow this course-Must Watch.mp4 [ea30d52c7e396b71] 18,027,768 9C50FEB8

Total size: 1,938,531,941
RAR Recovery
Not Present
Labels UNKNOWN