RAR-files |
lbwx-agaanlp.rar |
50,000,000 |
141570A2 |
lbwx-agaanlp.r00 |
50,000,000 |
E0E3A564 |
lbwx-agaanlp.r01 |
50,000,000 |
5B45E12E |
lbwx-agaanlp.r02 |
50,000,000 |
6409028C |
lbwx-agaanlp.r03 |
50,000,000 |
DA3DE1DE |
lbwx-agaanlp.r04 |
50,000,000 |
13598383 |
lbwx-agaanlp.r05 |
50,000,000 |
32C0A91F |
lbwx-agaanlp.r06 |
50,000,000 |
8AB7B4DE |
lbwx-agaanlp.r07 |
50,000,000 |
EB0CD7D1 |
lbwx-agaanlp.r08 |
50,000,000 |
1D1BC100 |
lbwx-agaanlp.r09 |
50,000,000 |
A1DF3789 |
lbwx-agaanlp.r10 |
50,000,000 |
C91EAB0E |
lbwx-agaanlp.r11 |
50,000,000 |
1489F5CF |
lbwx-agaanlp.r12 |
50,000,000 |
D3C3B9C2 |
lbwx-agaanlp.r13 |
50,000,000 |
DB9B40A4 |
lbwx-agaanlp.r14 |
50,000,000 |
A8E6CA85 |
lbwx-agaanlp.r15 |
50,000,000 |
8EDA1809 |
lbwx-agaanlp.r16 |
50,000,000 |
BE07B23A |
lbwx-agaanlp.r17 |
50,000,000 |
41025946 |
lbwx-agaanlp.r18 |
50,000,000 |
87FA4D25 |
lbwx-agaanlp.r19 |
50,000,000 |
839FFEC2 |
lbwx-agaanlp.r20 |
50,000,000 |
21E7952A |
lbwx-agaanlp.r21 |
50,000,000 |
C26FEB2C |
lbwx-agaanlp.r22 |
50,000,000 |
2901EFC6 |
lbwx-agaanlp.r23 |
50,000,000 |
27D98D61 |
lbwx-agaanlp.r24 |
50,000,000 |
BA603C54 |
lbwx-agaanlp.r25 |
50,000,000 |
2A184642 |
lbwx-agaanlp.r26 |
50,000,000 |
BBE3DEBB |
lbwx-agaanlp.r27 |
50,000,000 |
82BAC2C0 |
lbwx-agaanlp.r28 |
50,000,000 |
C60BEFFC |
lbwx-agaanlp.r29 |
50,000,000 |
5D1BCFEC |
lbwx-agaanlp.r30 |
50,000,000 |
D5731C10 |
lbwx-agaanlp.r31 |
50,000,000 |
951B5363 |
lbwx-agaanlp.r32 |
50,000,000 |
3C0AAA0F |
lbwx-agaanlp.r33 |
50,000,000 |
387403EB |
lbwx-agaanlp.r34 |
50,000,000 |
D9064CD1 |
lbwx-agaanlp.r35 |
50,000,000 |
77986752 |
lbwx-agaanlp.r36 |
50,000,000 |
43AF6B4B |
lbwx-agaanlp.r37 |
50,000,000 |
D42EDF5E |
lbwx-agaanlp.r38 |
50,000,000 |
44B6A530 |
lbwx-agaanlp.r39 |
50,000,000 |
D82A3D8C |
lbwx-agaanlp.r40 |
50,000,000 |
85AAC753 |
lbwx-agaanlp.r41 |
50,000,000 |
7D0AC90A |
lbwx-agaanlp.r42 |
50,000,000 |
30F6F0BA |
lbwx-agaanlp.r43 |
50,000,000 |
A2ED720B |
lbwx-agaanlp.r44 |
50,000,000 |
BAA2F18A |
lbwx-agaanlp.r45 |
50,000,000 |
8BB5865C |
lbwx-agaanlp.r46 |
50,000,000 |
AD19F82E |
lbwx-agaanlp.r47 |
50,000,000 |
38C506C9 |
lbwx-agaanlp.r48 |
50,000,000 |
4D17AFD3 |
lbwx-agaanlp.r49 |
50,000,000 |
F1149591 |
lbwx-agaanlp.r50 |
50,000,000 |
BF1CA2F5 |
lbwx-agaanlp.r51 |
50,000,000 |
F86B4C21 |
lbwx-agaanlp.r52 |
50,000,000 |
31783C16 |
lbwx-agaanlp.r53 |
50,000,000 |
E74824ED |
lbwx-agaanlp.r54 |
50,000,000 |
26D6A23A |
lbwx-agaanlp.r55 |
50,000,000 |
3EFB5231 |
lbwx-agaanlp.r56 |
50,000,000 |
46869FFE |
lbwx-agaanlp.r57 |
50,000,000 |
29B1E026 |
lbwx-agaanlp.r58 |
50,000,000 |
650A2149 |
lbwx-agaanlp.r59 |
50,000,000 |
D16B63F2 |
lbwx-agaanlp.r60 |
50,000,000 |
9825FD58 |
lbwx-agaanlp.r61 |
50,000,000 |
1C1FC010 |
lbwx-agaanlp.r62 |
50,000,000 |
5162734B |
lbwx-agaanlp.r63 |
50,000,000 |
894AC0CA |
lbwx-agaanlp.r64 |
50,000,000 |
798B2767 |
lbwx-agaanlp.r65 |
50,000,000 |
FBDCC4E5 |
lbwx-agaanlp.r66 |
50,000,000 |
FAF66D11 |
lbwx-agaanlp.r67 |
50,000,000 |
51C2C63D |
lbwx-agaanlp.r68 |
50,000,000 |
E3F5C687 |
lbwx-agaanlp.r69 |
50,000,000 |
DBF87D13 |
lbwx-agaanlp.r70 |
50,000,000 |
D13F6585 |
lbwx-agaanlp.r71 |
50,000,000 |
A012CE3B |
lbwx-agaanlp.r72 |
50,000,000 |
CACDC959 |
lbwx-agaanlp.r73 |
50,000,000 |
6330987D |
lbwx-agaanlp.r74 |
50,000,000 |
C9B58E66 |
lbwx-agaanlp.r75 |
50,000,000 |
08B4D99B |
lbwx-agaanlp.r76 |
50,000,000 |
41CDB68B |
lbwx-agaanlp.r77 |
50,000,000 |
527454A6 |
lbwx-agaanlp.r78 |
50,000,000 |
D215235A |
lbwx-agaanlp.r79 |
50,000,000 |
F6D7FB28 |
lbwx-agaanlp.r80 |
50,000,000 |
91568DFB |
lbwx-agaanlp.r81 |
50,000,000 |
9DA5BC5E |
lbwx-agaanlp.r82 |
50,000,000 |
69FBF36D |
lbwx-agaanlp.r83 |
50,000,000 |
F30C0CD4 |
lbwx-agaanlp.r84 |
50,000,000 |
3FAD0959 |
lbwx-agaanlp.r85 |
50,000,000 |
BB224BB3 |
lbwx-agaanlp.r86 |
50,000,000 |
FFC4373E |
lbwx-agaanlp.r87 |
50,000,000 |
55242BF0 |
lbwx-agaanlp.r88 |
50,000,000 |
3C6F0B42 |
lbwx-agaanlp.r89 |
50,000,000 |
E82AF03B |
lbwx-agaanlp.r90 |
41,049,081 |
7601585B |
|
Total size: |
4,591,049,081 |
|
|
Archived
files |
Chapter_6-OpenAI_API\61. Section Overview.mp4
[e99d1dff88119418]
|
3,789,228 |
16345E3F |
Chapter_6-OpenAI_API\62. ChatGPT (101).mp4
[da7f219359c3f2bc]
|
38,985,044 |
317CDBD8 |
Chapter_6-OpenAI_API\63. OpenAI API (101).mp4
[65aca2e4ffd2eae2]
|
40,198,441 |
039B9085 |
Chapter_6-OpenAI_API\64. Get your API Key (Coding).mp4
[94ddf048276b1128]
|
19,632,940 |
E26B3050 |
Chapter_6-OpenAI_API\65. Python Package (101).mp4
[d7ce00f080e1f9f3]
|
17,336,925 |
2F1CC285 |
Chapter_6-OpenAI_API\66. Python Package (Coding).mp4
[d9c1a2cd5d9bf2f3]
|
15,587,165 |
C5C22F5A |
Chapter_6-OpenAI_API\67. Rest APIs (101).mp4
[a630e597814f002c]
|
23,365,752 |
B750765B |
Chapter_6-OpenAI_API\68. OpenAI WebUI (Coding).mp4
[1762b6a5b82dbfef]
|
19,474,150 |
4E1DED72 |
Chapter_6-OpenAI_API\69. Cost (101).mp4
[b6aa5a17613009a7]
|
7,640,846 |
A6C58BF5 |
Chapter_7-Prompt_Engineering\70. Prompt Engineering (101).mp4
[be38e975eef99430]
|
33,307,056 |
DC3FBE93 |
Chapter_7-Prompt_Engineering\71. Clear Instructions (Coding).mp4
[34e30ad634e21e93]
|
24,076,752 |
74292BDC |
Chapter_7-Prompt_Engineering\72. Personas (Coding).mp4
[c21f171079b14f6b]
|
18,213,141 |
2566E02D |
Chapter_7-Prompt_Engineering\73. Delimiters (Coding).mp4
[835ab43befdc4ef1]
|
9,738,007 |
09D193CD |
Chapter_7-Prompt_Engineering\74. Divide into sub-tasks (Coding).mp4
[c46c00766e8e9b62]
|
14,008,394 |
1DB5A92A |
Chapter_7-Prompt_Engineering\75. Provide Examples (Coding).mp4
[3206a56ce9225e75]
|
11,831,942 |
8EAE74EC |
Chapter_7-Prompt_Engineering\76. Control Output (Coding).mp4
[d1fcbe8450b94271]
|
69,114,639 |
4881DC5E |
Chapter_8-Advanced_Prompt_Engineering\77. Advanced Prompt Engineering (101).mp4
[42673f30f5686ca]
|
15,841,157 |
4A4A1215 |
Chapter_8-Advanced_Prompt_Engineering\78. Few-Shot Prompting (101).mp4
[d3f72704b0d87bf8]
|
19,294,507 |
43675CC7 |
Chapter_8-Advanced_Prompt_Engineering\79. Chain-of-Thought (101).mp4
[f3b110393d6e9045]
|
43,368,268 |
C7935F70 |
Chapter_8-Advanced_Prompt_Engineering\80. Chain-of-Thought (Example).mp4
[cc0b89c7f131da6c]
|
21,736,188 |
8232D607 |
Chapter_8-Advanced_Prompt_Engineering\81. Chain-of-Thought (Coding).mp4
[988175e8b4c94f58]
|
83,455,088 |
DC42043A |
Chapter_8-Advanced_Prompt_Engineering\82. Self-Consistency Chain-of-Thought (101).mp4
[94a16397a6419548]
|
13,975,525 |
68BC6048 |
Chapter_8-Advanced_Prompt_Engineering\83. Self-Consistency Chain-of-Thought (Example).mp4
[10e6675213b7705]
|
7,170,287 |
64A1993D |
Chapter_8-Advanced_Prompt_Engineering\84. Self-Consistency Chain-of-Thought (Coding).mp4
[7591a693b6842f40]
|
90,956,281 |
460FCE7C |
Chapter_8-Advanced_Prompt_Engineering\85. Prompt Chaining (101).mp4
[dc645db4e189fab1]
|
17,124,503 |
6FF6BA13 |
Chapter_8-Advanced_Prompt_Engineering\86. Prompt Chaining (Example).mp4
[3296a2c73146d23f]
|
13,548,225 |
4B05DAD3 |
Chapter_8-Advanced_Prompt_Engineering\87. Reflection (101).mp4
[4633d166ef7bb5ec]
|
12,755,201 |
DE0D2C96 |
Chapter_8-Advanced_Prompt_Engineering\88. Tree-of-Thought (101).mp4
[402e93be4b94f208]
|
19,047,761 |
E0C3D0E9 |
Chapter_8-Advanced_Prompt_Engineering\89. Self-Feedback (101).mp4
[b580e771d88c34c]
|
13,369,626 |
0DAC16B1 |
Chapter_8-Advanced_Prompt_Engineering\90. Self-Feedback (Example).mp4
[700e49ddb5d7559c]
|
20,356,049 |
C438F8B4 |
Chapter_8-Advanced_Prompt_Engineering\91. Self-Feedback (Coding).mp4
[a2bcd1e00efd5ab3]
|
84,662,432 |
52E2D0EF |
Chapter_8-Advanced_Prompt_Engineering\92. Self-Critique (101).mp4
[6a0d3cd2906d53f1]
|
7,405,931 |
FC10F6CD |
Chapter_8-Advanced_Prompt_Engineering\93. Self-Critique (Coding).mp4
[e19a06d8b435bde7]
|
48,492,558 |
E78D7737 |
Chapter_9-Retrieval_Augmented_Generation_(RAG)\94. RAG (101).mp4
[e50d216dcf73acc8]
|
18,329,043 |
CACBF16D |
Chapter_9-Retrieval_Augmented_Generation_(RAG)\95. RAG Coding - The Final Result.mp4
[a216071620ea7c17]
|
16,671,555 |
29F63F15 |
Chapter_9-Retrieval_Augmented_Generation_(RAG)\96. RAG Handling Vector DB (Coding).mp4
[fc201b2853ea3382]
|
51,756,196 |
8BE5FA87 |
Chapter_9-Retrieval_Augmented_Generation_(RAG)\97. RAG Handling LLM (Coding).mp4
[66f2273c69644b08]
|
43,829,591 |
82812DAA |
Chapter_9-Retrieval_Augmented_Generation_(RAG)\98. RAG Putting all together (Coding).mp4
[86fd32ba1996ad44]
|
66,156,293 |
310D9C39 |
Chapter_10-Capstone_Project_Chatbot\100. Webapp Climate Change Chatbot Data Prep (Coding).mp4
[ac587fe0ea0600e2]
|
198,092,118 |
959AC69F |
Chapter_10-Capstone_Project_Chatbot\101. Webapp Climate Change Chatbot Vector DB (Coding).mp4
[9bc78b1b1e1ea12]
|
50,133,132 |
CB061110 |
Chapter_10-Capstone_Project_Chatbot\102. Webapp Climate Change Chatbot RAG (Coding).mp4
[fae9cd315a5fcbb]
|
91,701,577 |
FA9AC7D0 |
Chapter_10-Capstone_Project_Chatbot\103. Webapp Climate Change Chatbot Webapp (Coding).mp4
[d08846688ad4ab12]
|
109,765,212 |
732A1E5C |
Chapter_10-Capstone_Project_Chatbot\99. Webapp Climate Change Chatbot (101).mp4
[c3ed116d363317c5]
|
12,077,100 |
67D48922 |
Chapter_11-Open_Source_LLMs\104. Open Source LLMs (101).mp4
[ba5d7bb7107f18aa]
|
54,322,383 |
AA730471 |
Chapter_11-Open_Source_LLMs\105. Open Source LLMs (Coding).mp4
[9a7e5c87b2db978]
|
71,425,861 |
60930944 |
Chapter_12-Data_Augmentation\106. Data Augmentation (101).mp4
[b58951f119c8f4f]
|
32,626,479 |
778C5D3C |
Chapter_12-Data_Augmentation\107. Data Augmentation Back-Translation (Coding).mp4
[d5dd481fcb457610]
|
52,031,785 |
7E499C96 |
Chapter_12-Data_Augmentation\108. Data Augmentation Replacement with Synonyms (Coding).mp4
[2921e399b25f67f8]
|
15,224,079 |
9348ECDE |
Chapter_12-Data_Augmentation\109. Data Augmentation Random Cropping (Coding).mp4
[f75d15ff1639134]
|
9,695,366 |
9114ABE9 |
Chapter_12-Data_Augmentation\110. Data Augmentation Contextual Augmentation (Coding).mp4
[6e014765634439b2]
|
12,517,679 |
55AF0755 |
Chapter_12-Data_Augmentation\111. Data Augmentation Word Embeddings (Coding).mp4
[cbc76056f9ec7627]
|
27,173,107 |
8B0667E4 |
Chapter_12-Data_Augmentation\112. Data Augmentation Fill-Mask (Coding).mp4
[41d5ab593aec4302]
|
15,642,072 |
C77836D9 |
Chapter_13-Miscellanious\113. Claude (101).mp4
[fd60fd84a727419]
|
45,762,607 |
EA33D0A8 |
Chapter_13-Miscellanious\114. Claude (Coding).mp4
[ac884a7b9eecfdca]
|
66,169,268 |
FC4E161E |
Chapter_13-Miscellanious\115. LLM-Functions (101).mp4
[d2a9f59689bc1135]
|
40,253,330 |
84FDE170 |
Chapter_13-Miscellanious\116. LLM-Functions (Coding).mp4
[4c0a47a3056dceef]
|
112,181,727 |
EE231AA0 |
Chapter_14-Final_Section\118. Closing Remarks.mp4
[9b1a518a811d8fa1]
|
19,564,178 |
7A2F5D5E |
Chapter_1-Couse_Introduction\1. Course Scope (101).mp4
[93f8893ac0b2b629]
|
14,804,495 |
B6277DFC |
Chapter_1-Couse_Introduction\2. Who am I.mp4
[864a7d3242e4e20]
|
7,451,272 |
CE57CBE9 |
Chapter_1-Couse_Introduction\3. How to work with The course (101).mp4
[1219b7879dc43c0b]
|
18,249,711 |
757226F7 |
Chapter_1-Couse_Introduction\4. How to get the material (Coding).mp4
[c2130f437b0a1944]
|
20,349,933 |
C140BBE5 |
Chapter_1-Couse_Introduction\6. System Setup (101).mp4
[f8d32fccabc9c346]
|
39,664,388 |
4CAFCD97 |
Chapter_1-Couse_Introduction\7. System Setup (Coding).mp4
[14893c125566718c]
|
41,825,229 |
BAFA6690 |
Chapter_2-NLP_Introduction\10. Word Embeddings (101).mp4
[4ef18754b5270e15]
|
35,576,537 |
6E7387E6 |
Chapter_2-NLP_Introduction\11. Sentiment OHE Coding Intro.mp4
[6d9a0be6ebb04d3d]
|
9,737,086 |
AB58CA16 |
Chapter_2-NLP_Introduction\12. Sentiment OHE (Coding).mp4
[e6d0a5002509afab]
|
132,082,514 |
E1F99356 |
Chapter_2-NLP_Introduction\13. Word Embeddings with NN (101).mp4
[d3d728854dba8b2d]
|
54,986,808 |
43A38CE3 |
Chapter_2-NLP_Introduction\14. GloVe Get Word Embedding (Coding).mp4
[7d608ffa6a076242]
|
46,854,099 |
038CA317 |
Chapter_2-NLP_Introduction\15. GloVe Find closest words (Coding).mp4
[a06e9099d3580473]
|
62,298,482 |
AE2E7A3F |
Chapter_2-NLP_Introduction\16. GloVe Word Analogy (Coding).mp4
[fb08af0914753198]
|
81,048,593 |
C09B5254 |
Chapter_2-NLP_Introduction\17. GloVe Word Cluster (101).mp4
[1e4b96c196725f8d]
|
8,287,544 |
60E50DDB |
Chapter_2-NLP_Introduction\18. GloVe Word (Coding).mp4
[1996c47b63c132b1]
|
156,949,461 |
139F6426 |
Chapter_2-NLP_Introduction\19. Sentiment with Embedding (101).mp4
[88db0881d94a997e]
|
5,688,885 |
6D0B6EC3 |
Chapter_2-NLP_Introduction\20. Sentiment with Embedding (Coding).mp4
[42db2a7fedf326e4]
|
119,282,773 |
FE9B9746 |
Chapter_2-NLP_Introduction\21. Transformers (101).mp4
[c2fdb2805837dac8]
|
44,028,856 |
8115A894 |
Chapter_2-NLP_Introduction\8. Section Overview.mp4
[db5dc532c1d01a32]
|
13,678,695 |
E0DA143C |
Chapter_2-NLP_Introduction\9. NLP (101).mp4
[b15aae08834a77a]
|
34,802,380 |
78771346 |
Chapter_3-Apply_Huggingface_for_Pre_Trained_Models\22. Section Overview.mp4
[f6a5dfac8de7a3b5]
|
4,453,734 |
F903EFBD |
Chapter_3-Apply_Huggingface_for_Pre_Trained_Models\23. Huggingface (101).mp4
[bef14bf2b37bcb53]
|
11,088,006 |
25B05970 |
Chapter_3-Apply_Huggingface_for_Pre_Trained_Models\24. Pipelines General Use (101).mp4
[ca985cf06faf926a]
|
26,093,770 |
E22916EF |
Chapter_3-Apply_Huggingface_for_Pre_Trained_Models\25. Text Classification (101).mp4
[6cca41d57d52c268]
|
6,543,245 |
05BD12A9 |
Chapter_3-Apply_Huggingface_for_Pre_Trained_Models\26. Pipelines General Use (Coding).mp4
[60d6b45ffe192eb7]
|
54,268,193 |
F270E814 |
Chapter_3-Apply_Huggingface_for_Pre_Trained_Models\27. Named Entity Recognition (101).mp4
[2de96d18a869ea27]
|
7,308,124 |
8AD44005 |
Chapter_3-Apply_Huggingface_for_Pre_Trained_Models\28. Named Entity Recognition (Coding).mp4
[69d0aceb83305426]
|
8,902,904 |
A2C688FA |
Chapter_3-Apply_Huggingface_for_Pre_Trained_Models\29. Question Answering (101).mp4
[efc3770112c59006]
|
5,334,602 |
8900984B |
Chapter_3-Apply_Huggingface_for_Pre_Trained_Models\30. Question Answering (Coding).mp4
[28c44db0ba6962f7]
|
7,489,397 |
BC0B2EB5 |
Chapter_3-Apply_Huggingface_for_Pre_Trained_Models\31. Text Summarization (101).mp4
[29293ffb471df380]
|
6,074,783 |
E183A686 |
Chapter_3-Apply_Huggingface_for_Pre_Trained_Models\32. Text Summarization (Coding).mp4
[df726bae1f8aa2f3]
|
34,085,707 |
433AE4E6 |
Chapter_3-Apply_Huggingface_for_Pre_Trained_Models\33. Translation (101).mp4
[b0c5d74457ea5190]
|
4,870,008 |
EA80A380 |
Chapter_3-Apply_Huggingface_for_Pre_Trained_Models\34. Translation (Coding).mp4
[60d7906d4b035112]
|
8,285,525 |
149CF6FA |
Chapter_3-Apply_Huggingface_for_Pre_Trained_Models\35. Fill-Mask (101).mp4
[94a1c2d946f43d28]
|
5,326,971 |
4C8D39AB |
Chapter_3-Apply_Huggingface_for_Pre_Trained_Models\36. Fill-Mask (Coding).mp4
[d65fa027815b2815]
|
9,816,404 |
770800F7 |
Chapter_3-Apply_Huggingface_for_Pre_Trained_Models\37. Zero-Shot Text Classification (101).mp4
[6258ba9c27f23f55]
|
40,484,850 |
8615D773 |
Chapter_3-Apply_Huggingface_for_Pre_Trained_Models\38. Zero-Shot Text Classification (Coding).mp4
[6a173b6eb01527a6]
|
105,244,617 |
1AC05C00 |
Chapter_4-Model_Finetuning\39. Section Overview.mp4
[dd44dd19e2fa7893]
|
11,643,454 |
50AF24FC |
Chapter_4-Model_Finetuning\40. Simple Model (101).mp4
[c872f6ec004f212d]
|
29,986,252 |
2E8A6054 |
Chapter_4-Model_Finetuning\41. Exploratory Data Analysis (Coding).mp4
[e714016b48bd2370]
|
58,512,669 |
6B365C2C |
Chapter_4-Model_Finetuning\42. Simple Model (Coding).mp4
[20180d5ca39e1ef8]
|
130,210,375 |
265ED1E4 |
Chapter_4-Model_Finetuning\43. Finetuning Model (101).mp4
[a1ee79fd848e22b2]
|
20,789,390 |
57EA4387 |
Chapter_4-Model_Finetuning\44. Huggingface Trainer (101).mp4
[88d5a946b377d192]
|
7,537,080 |
D4FCD9A3 |
Chapter_4-Model_Finetuning\45. Finetuning Model (Coding).mp4
[94e4db611e06266f]
|
99,409,207 |
12C2D45C |
Chapter_4-Model_Finetuning\46. Saving Model to huggingface Loading Model (Coding).mp4
[a27c080863726018]
|
40,604,173 |
F0D5AED0 |
Chapter_5-Vector_Databases\47. Vector Databases (101).mp4
[372eec707360f2fd]
|
40,560,464 |
1EE92920 |
Chapter_5-Vector_Databases\48. Tokenization (101).mp4
[5a29765451eb2982]
|
14,616,441 |
E697AFBD |
Chapter_5-Vector_Databases\49. Tokenization (Practical).mp4
[f0186265c3c1a1e]
|
9,569,339 |
414668CE |
Chapter_5-Vector_Databases\50. Tokenization (Coding).mp4
[91ed001126ce1ac8]
|
69,094,847 |
E224D2D1 |
Chapter_5-Vector_Databases\51. Bible Vector DB - The Full Picture.mp4
[701214b2aa0dab46]
|
3,557,310 |
A68701CF |
Chapter_5-Vector_Databases\52. Bible Vector DB - Data Prep (Coding).mp4
[354cd944ebcfda99]
|
100,223,329 |
E318290E |
Chapter_5-Vector_Databases\53. Bible Vector DB - Database Handling (Coding).mp4
[657a878784accc4b]
|
91,131,211 |
AD3C383E |
Chapter_5-Vector_Databases\54. Exercise Movies Vector DB.mp4
[72eb2761cdcce01d]
|
16,354,051 |
94BDFF09 |
Chapter_5-Vector_Databases\55. Solution Movies Vector DB - Data Prep (Coding).mp4
[18d4e19824c6b770]
|
80,808,017 |
9C98E4EC |
Chapter_5-Vector_Databases\56. Solution Movies Vector DB - DB-Setup (Coding).mp4
[8934441cedd31e85]
|
77,670,490 |
64065FCC |
Chapter_5-Vector_Databases\57. Solution Movies Vector DB - Query Function (Coding).mp4
[81ed3931ec32fea8]
|
66,101,512 |
D5A0F944 |
Chapter_5-Vector_Databases\58. Multimodal Vector DB (101).mp4
[e162612f0e4697b3]
|
31,907,970 |
AC7E77B9 |
Chapter_5-Vector_Databases\59. Multimodal Vector DB Setup (Coding).mp4
[30e07f47556c5fda]
|
73,433,318 |
A090A65C |
Chapter_5-Vector_Databases\60. Multimodal Vector DB Query (Coding).mp4
[205cb49d6fd2cd28]
|
92,021,404 |
B8387EBC |
Chapter_6-OpenAI_API |
0 |
00000000 |
Chapter_7-Prompt_Engineering |
0 |
00000000 |
Chapter_8-Advanced_Prompt_Engineering |
0 |
00000000 |
Chapter_9-Retrieval_Augmented_Generation_(RAG) |
0 |
00000000 |
Chapter_10-Capstone_Project_Chatbot |
0 |
00000000 |
Chapter_11-Open_Source_LLMs |
0 |
00000000 |
Chapter_12-Data_Augmentation |
0 |
00000000 |
Chapter_13-Miscellanious |
0 |
00000000 |
Chapter_14-Final_Section |
0 |
00000000 |
Chapter_1-Couse_Introduction |
0 |
00000000 |
Chapter_2-NLP_Introduction |
0 |
00000000 |
Chapter_3-Apply_Huggingface_for_Pre_Trained_Models |
0 |
00000000 |
Chapter_4-Model_Finetuning |
0 |
00000000 |
Chapter_5-Vector_Databases |
0 |
00000000 |
|
Total size: |
4,591,022,631 |
|
|