Yes, this is how it was pred or spread.
  • Anonymous
  • 2024-06-07 10:49:57
  • Unknown

RELEASE >

ReScene version pyReScene Auto 0.7 LBWx File size CRC
Download
38,372
Stored files
128 394DC99A
2,484 78348960
RAR-files
lbwx-agaanlp.rar 50,000,000 141570A2
lbwx-agaanlp.r00 50,000,000 E0E3A564
lbwx-agaanlp.r01 50,000,000 5B45E12E
lbwx-agaanlp.r02 50,000,000 6409028C
lbwx-agaanlp.r03 50,000,000 DA3DE1DE
lbwx-agaanlp.r04 50,000,000 13598383
lbwx-agaanlp.r05 50,000,000 32C0A91F
lbwx-agaanlp.r06 50,000,000 8AB7B4DE
lbwx-agaanlp.r07 50,000,000 EB0CD7D1
lbwx-agaanlp.r08 50,000,000 1D1BC100
lbwx-agaanlp.r09 50,000,000 A1DF3789
lbwx-agaanlp.r10 50,000,000 C91EAB0E
lbwx-agaanlp.r11 50,000,000 1489F5CF
lbwx-agaanlp.r12 50,000,000 D3C3B9C2
lbwx-agaanlp.r13 50,000,000 DB9B40A4
lbwx-agaanlp.r14 50,000,000 A8E6CA85
lbwx-agaanlp.r15 50,000,000 8EDA1809
lbwx-agaanlp.r16 50,000,000 BE07B23A
lbwx-agaanlp.r17 50,000,000 41025946
lbwx-agaanlp.r18 50,000,000 87FA4D25
lbwx-agaanlp.r19 50,000,000 839FFEC2
lbwx-agaanlp.r20 50,000,000 21E7952A
lbwx-agaanlp.r21 50,000,000 C26FEB2C
lbwx-agaanlp.r22 50,000,000 2901EFC6
lbwx-agaanlp.r23 50,000,000 27D98D61
lbwx-agaanlp.r24 50,000,000 BA603C54
lbwx-agaanlp.r25 50,000,000 2A184642
lbwx-agaanlp.r26 50,000,000 BBE3DEBB
lbwx-agaanlp.r27 50,000,000 82BAC2C0
lbwx-agaanlp.r28 50,000,000 C60BEFFC
lbwx-agaanlp.r29 50,000,000 5D1BCFEC
lbwx-agaanlp.r30 50,000,000 D5731C10
lbwx-agaanlp.r31 50,000,000 951B5363
lbwx-agaanlp.r32 50,000,000 3C0AAA0F
lbwx-agaanlp.r33 50,000,000 387403EB
lbwx-agaanlp.r34 50,000,000 D9064CD1
lbwx-agaanlp.r35 50,000,000 77986752
lbwx-agaanlp.r36 50,000,000 43AF6B4B
lbwx-agaanlp.r37 50,000,000 D42EDF5E
lbwx-agaanlp.r38 50,000,000 44B6A530
lbwx-agaanlp.r39 50,000,000 D82A3D8C
lbwx-agaanlp.r40 50,000,000 85AAC753
lbwx-agaanlp.r41 50,000,000 7D0AC90A
lbwx-agaanlp.r42 50,000,000 30F6F0BA
lbwx-agaanlp.r43 50,000,000 A2ED720B
lbwx-agaanlp.r44 50,000,000 BAA2F18A
lbwx-agaanlp.r45 50,000,000 8BB5865C
lbwx-agaanlp.r46 50,000,000 AD19F82E
lbwx-agaanlp.r47 50,000,000 38C506C9
lbwx-agaanlp.r48 50,000,000 4D17AFD3
lbwx-agaanlp.r49 50,000,000 F1149591
lbwx-agaanlp.r50 50,000,000 BF1CA2F5
lbwx-agaanlp.r51 50,000,000 F86B4C21
lbwx-agaanlp.r52 50,000,000 31783C16
lbwx-agaanlp.r53 50,000,000 E74824ED
lbwx-agaanlp.r54 50,000,000 26D6A23A
lbwx-agaanlp.r55 50,000,000 3EFB5231
lbwx-agaanlp.r56 50,000,000 46869FFE
lbwx-agaanlp.r57 50,000,000 29B1E026
lbwx-agaanlp.r58 50,000,000 650A2149
lbwx-agaanlp.r59 50,000,000 D16B63F2
lbwx-agaanlp.r60 50,000,000 9825FD58
lbwx-agaanlp.r61 50,000,000 1C1FC010
lbwx-agaanlp.r62 50,000,000 5162734B
lbwx-agaanlp.r63 50,000,000 894AC0CA
lbwx-agaanlp.r64 50,000,000 798B2767
lbwx-agaanlp.r65 50,000,000 FBDCC4E5
lbwx-agaanlp.r66 50,000,000 FAF66D11
lbwx-agaanlp.r67 50,000,000 51C2C63D
lbwx-agaanlp.r68 50,000,000 E3F5C687
lbwx-agaanlp.r69 50,000,000 DBF87D13
lbwx-agaanlp.r70 50,000,000 D13F6585
lbwx-agaanlp.r71 50,000,000 A012CE3B
lbwx-agaanlp.r72 50,000,000 CACDC959
lbwx-agaanlp.r73 50,000,000 6330987D
lbwx-agaanlp.r74 50,000,000 C9B58E66
lbwx-agaanlp.r75 50,000,000 08B4D99B
lbwx-agaanlp.r76 50,000,000 41CDB68B
lbwx-agaanlp.r77 50,000,000 527454A6
lbwx-agaanlp.r78 50,000,000 D215235A
lbwx-agaanlp.r79 50,000,000 F6D7FB28
lbwx-agaanlp.r80 50,000,000 91568DFB
lbwx-agaanlp.r81 50,000,000 9DA5BC5E
lbwx-agaanlp.r82 50,000,000 69FBF36D
lbwx-agaanlp.r83 50,000,000 F30C0CD4
lbwx-agaanlp.r84 50,000,000 3FAD0959
lbwx-agaanlp.r85 50,000,000 BB224BB3
lbwx-agaanlp.r86 50,000,000 FFC4373E
lbwx-agaanlp.r87 50,000,000 55242BF0
lbwx-agaanlp.r88 50,000,000 3C6F0B42
lbwx-agaanlp.r89 50,000,000 E82AF03B
lbwx-agaanlp.r90 41,049,081 7601585B

Total size: 4,591,049,081
Archived files
Chapter_6-OpenAI_API\61. Section Overview.mp4 [e99d1dff88119418] 3,789,228 16345E3F
Chapter_6-OpenAI_API\62. ChatGPT (101).mp4 [da7f219359c3f2bc] 38,985,044 317CDBD8
Chapter_6-OpenAI_API\63. OpenAI API (101).mp4 [65aca2e4ffd2eae2] 40,198,441 039B9085
Chapter_6-OpenAI_API\64. Get your API Key (Coding).mp4 [94ddf048276b1128] 19,632,940 E26B3050
Chapter_6-OpenAI_API\65. Python Package (101).mp4 [d7ce00f080e1f9f3] 17,336,925 2F1CC285
Chapter_6-OpenAI_API\66. Python Package (Coding).mp4 [d9c1a2cd5d9bf2f3] 15,587,165 C5C22F5A
Chapter_6-OpenAI_API\67. Rest APIs (101).mp4 [a630e597814f002c] 23,365,752 B750765B
Chapter_6-OpenAI_API\68. OpenAI WebUI (Coding).mp4 [1762b6a5b82dbfef] 19,474,150 4E1DED72
Chapter_6-OpenAI_API\69. Cost (101).mp4 [b6aa5a17613009a7] 7,640,846 A6C58BF5
Chapter_7-Prompt_Engineering\70. Prompt Engineering (101).mp4 [be38e975eef99430] 33,307,056 DC3FBE93
Chapter_7-Prompt_Engineering\71. Clear Instructions (Coding).mp4 [34e30ad634e21e93] 24,076,752 74292BDC
Chapter_7-Prompt_Engineering\72. Personas (Coding).mp4 [c21f171079b14f6b] 18,213,141 2566E02D
Chapter_7-Prompt_Engineering\73. Delimiters (Coding).mp4 [835ab43befdc4ef1] 9,738,007 09D193CD
Chapter_7-Prompt_Engineering\74. Divide into sub-tasks (Coding).mp4 [c46c00766e8e9b62] 14,008,394 1DB5A92A
Chapter_7-Prompt_Engineering\75. Provide Examples (Coding).mp4 [3206a56ce9225e75] 11,831,942 8EAE74EC
Chapter_7-Prompt_Engineering\76. Control Output (Coding).mp4 [d1fcbe8450b94271] 69,114,639 4881DC5E
Chapter_8-Advanced_Prompt_Engineering\77. Advanced Prompt Engineering (101).mp4 [42673f30f5686ca] 15,841,157 4A4A1215
Chapter_8-Advanced_Prompt_Engineering\78. Few-Shot Prompting (101).mp4 [d3f72704b0d87bf8] 19,294,507 43675CC7
Chapter_8-Advanced_Prompt_Engineering\79. Chain-of-Thought (101).mp4 [f3b110393d6e9045] 43,368,268 C7935F70
Chapter_8-Advanced_Prompt_Engineering\80. Chain-of-Thought (Example).mp4 [cc0b89c7f131da6c] 21,736,188 8232D607
Chapter_8-Advanced_Prompt_Engineering\81. Chain-of-Thought (Coding).mp4 [988175e8b4c94f58] 83,455,088 DC42043A
Chapter_8-Advanced_Prompt_Engineering\82. Self-Consistency Chain-of-Thought (101).mp4 [94a16397a6419548] 13,975,525 68BC6048
Chapter_8-Advanced_Prompt_Engineering\83. Self-Consistency Chain-of-Thought (Example).mp4 [10e6675213b7705] 7,170,287 64A1993D
Chapter_8-Advanced_Prompt_Engineering\84. Self-Consistency Chain-of-Thought (Coding).mp4 [7591a693b6842f40] 90,956,281 460FCE7C
Chapter_8-Advanced_Prompt_Engineering\85. Prompt Chaining (101).mp4 [dc645db4e189fab1] 17,124,503 6FF6BA13
Chapter_8-Advanced_Prompt_Engineering\86. Prompt Chaining (Example).mp4 [3296a2c73146d23f] 13,548,225 4B05DAD3
Chapter_8-Advanced_Prompt_Engineering\87. Reflection (101).mp4 [4633d166ef7bb5ec] 12,755,201 DE0D2C96
Chapter_8-Advanced_Prompt_Engineering\88. Tree-of-Thought (101).mp4 [402e93be4b94f208] 19,047,761 E0C3D0E9
Chapter_8-Advanced_Prompt_Engineering\89. Self-Feedback (101).mp4 [b580e771d88c34c] 13,369,626 0DAC16B1
Chapter_8-Advanced_Prompt_Engineering\90. Self-Feedback (Example).mp4 [700e49ddb5d7559c] 20,356,049 C438F8B4
Chapter_8-Advanced_Prompt_Engineering\91. Self-Feedback (Coding).mp4 [a2bcd1e00efd5ab3] 84,662,432 52E2D0EF
Chapter_8-Advanced_Prompt_Engineering\92. Self-Critique (101).mp4 [6a0d3cd2906d53f1] 7,405,931 FC10F6CD
Chapter_8-Advanced_Prompt_Engineering\93. Self-Critique (Coding).mp4 [e19a06d8b435bde7] 48,492,558 E78D7737
Chapter_9-Retrieval_Augmented_Generation_(RAG)\94. RAG (101).mp4 [e50d216dcf73acc8] 18,329,043 CACBF16D
Chapter_9-Retrieval_Augmented_Generation_(RAG)\95. RAG Coding - The Final Result.mp4 [a216071620ea7c17] 16,671,555 29F63F15
Chapter_9-Retrieval_Augmented_Generation_(RAG)\96. RAG Handling Vector DB (Coding).mp4 [fc201b2853ea3382] 51,756,196 8BE5FA87
Chapter_9-Retrieval_Augmented_Generation_(RAG)\97. RAG Handling LLM (Coding).mp4 [66f2273c69644b08] 43,829,591 82812DAA
Chapter_9-Retrieval_Augmented_Generation_(RAG)\98. RAG Putting all together (Coding).mp4 [86fd32ba1996ad44] 66,156,293 310D9C39
Chapter_10-Capstone_Project_Chatbot\100. Webapp Climate Change Chatbot Data Prep (Coding).mp4 [ac587fe0ea0600e2] 198,092,118 959AC69F
Chapter_10-Capstone_Project_Chatbot\101. Webapp Climate Change Chatbot Vector DB (Coding).mp4 [9bc78b1b1e1ea12] 50,133,132 CB061110
Chapter_10-Capstone_Project_Chatbot\102. Webapp Climate Change Chatbot RAG (Coding).mp4 [fae9cd315a5fcbb] 91,701,577 FA9AC7D0
Chapter_10-Capstone_Project_Chatbot\103. Webapp Climate Change Chatbot Webapp (Coding).mp4 [d08846688ad4ab12] 109,765,212 732A1E5C
Chapter_10-Capstone_Project_Chatbot\99. Webapp Climate Change Chatbot (101).mp4 [c3ed116d363317c5] 12,077,100 67D48922
Chapter_11-Open_Source_LLMs\104. Open Source LLMs (101).mp4 [ba5d7bb7107f18aa] 54,322,383 AA730471
Chapter_11-Open_Source_LLMs\105. Open Source LLMs (Coding).mp4 [9a7e5c87b2db978] 71,425,861 60930944
Chapter_12-Data_Augmentation\106. Data Augmentation (101).mp4 [b58951f119c8f4f] 32,626,479 778C5D3C
Chapter_12-Data_Augmentation\107. Data Augmentation Back-Translation (Coding).mp4 [d5dd481fcb457610] 52,031,785 7E499C96
Chapter_12-Data_Augmentation\108. Data Augmentation Replacement with Synonyms (Coding).mp4 [2921e399b25f67f8] 15,224,079 9348ECDE
Chapter_12-Data_Augmentation\109. Data Augmentation Random Cropping (Coding).mp4 [f75d15ff1639134] 9,695,366 9114ABE9
Chapter_12-Data_Augmentation\110. Data Augmentation Contextual Augmentation (Coding).mp4 [6e014765634439b2] 12,517,679 55AF0755
Chapter_12-Data_Augmentation\111. Data Augmentation Word Embeddings (Coding).mp4 [cbc76056f9ec7627] 27,173,107 8B0667E4
Chapter_12-Data_Augmentation\112. Data Augmentation Fill-Mask (Coding).mp4 [41d5ab593aec4302] 15,642,072 C77836D9
Chapter_13-Miscellanious\113. Claude (101).mp4 [fd60fd84a727419] 45,762,607 EA33D0A8
Chapter_13-Miscellanious\114. Claude (Coding).mp4 [ac884a7b9eecfdca] 66,169,268 FC4E161E
Chapter_13-Miscellanious\115. LLM-Functions (101).mp4 [d2a9f59689bc1135] 40,253,330 84FDE170
Chapter_13-Miscellanious\116. LLM-Functions (Coding).mp4 [4c0a47a3056dceef] 112,181,727 EE231AA0
Chapter_14-Final_Section\118. Closing Remarks.mp4 [9b1a518a811d8fa1] 19,564,178 7A2F5D5E
Chapter_1-Couse_Introduction\1. Course Scope (101).mp4 [93f8893ac0b2b629] 14,804,495 B6277DFC
Chapter_1-Couse_Introduction\2. Who am I.mp4 [864a7d3242e4e20] 7,451,272 CE57CBE9
Chapter_1-Couse_Introduction\3. How to work with The course (101).mp4 [1219b7879dc43c0b] 18,249,711 757226F7
Chapter_1-Couse_Introduction\4. How to get the material (Coding).mp4 [c2130f437b0a1944] 20,349,933 C140BBE5
Chapter_1-Couse_Introduction\6. System Setup (101).mp4 [f8d32fccabc9c346] 39,664,388 4CAFCD97
Chapter_1-Couse_Introduction\7. System Setup (Coding).mp4 [14893c125566718c] 41,825,229 BAFA6690
Chapter_2-NLP_Introduction\10. Word Embeddings (101).mp4 [4ef18754b5270e15] 35,576,537 6E7387E6
Chapter_2-NLP_Introduction\11. Sentiment OHE Coding Intro.mp4 [6d9a0be6ebb04d3d] 9,737,086 AB58CA16
Chapter_2-NLP_Introduction\12. Sentiment OHE (Coding).mp4 [e6d0a5002509afab] 132,082,514 E1F99356
Chapter_2-NLP_Introduction\13. Word Embeddings with NN (101).mp4 [d3d728854dba8b2d] 54,986,808 43A38CE3
Chapter_2-NLP_Introduction\14. GloVe Get Word Embedding (Coding).mp4 [7d608ffa6a076242] 46,854,099 038CA317
Chapter_2-NLP_Introduction\15. GloVe Find closest words (Coding).mp4 [a06e9099d3580473] 62,298,482 AE2E7A3F
Chapter_2-NLP_Introduction\16. GloVe Word Analogy (Coding).mp4 [fb08af0914753198] 81,048,593 C09B5254
Chapter_2-NLP_Introduction\17. GloVe Word Cluster (101).mp4 [1e4b96c196725f8d] 8,287,544 60E50DDB
Chapter_2-NLP_Introduction\18. GloVe Word (Coding).mp4 [1996c47b63c132b1] 156,949,461 139F6426
Chapter_2-NLP_Introduction\19. Sentiment with Embedding (101).mp4 [88db0881d94a997e] 5,688,885 6D0B6EC3
Chapter_2-NLP_Introduction\20. Sentiment with Embedding (Coding).mp4 [42db2a7fedf326e4] 119,282,773 FE9B9746
Chapter_2-NLP_Introduction\21. Transformers (101).mp4 [c2fdb2805837dac8] 44,028,856 8115A894
Chapter_2-NLP_Introduction\8. Section Overview.mp4 [db5dc532c1d01a32] 13,678,695 E0DA143C
Chapter_2-NLP_Introduction\9. NLP (101).mp4 [b15aae08834a77a] 34,802,380 78771346
Chapter_3-Apply_Huggingface_for_Pre_Trained_Models\22. Section Overview.mp4 [f6a5dfac8de7a3b5] 4,453,734 F903EFBD
Chapter_3-Apply_Huggingface_for_Pre_Trained_Models\23. Huggingface (101).mp4 [bef14bf2b37bcb53] 11,088,006 25B05970
Chapter_3-Apply_Huggingface_for_Pre_Trained_Models\24. Pipelines General Use (101).mp4 [ca985cf06faf926a] 26,093,770 E22916EF
Chapter_3-Apply_Huggingface_for_Pre_Trained_Models\25. Text Classification (101).mp4 [6cca41d57d52c268] 6,543,245 05BD12A9
Chapter_3-Apply_Huggingface_for_Pre_Trained_Models\26. Pipelines General Use (Coding).mp4 [60d6b45ffe192eb7] 54,268,193 F270E814
Chapter_3-Apply_Huggingface_for_Pre_Trained_Models\27. Named Entity Recognition (101).mp4 [2de96d18a869ea27] 7,308,124 8AD44005
Chapter_3-Apply_Huggingface_for_Pre_Trained_Models\28. Named Entity Recognition (Coding).mp4 [69d0aceb83305426] 8,902,904 A2C688FA
Chapter_3-Apply_Huggingface_for_Pre_Trained_Models\29. Question Answering (101).mp4 [efc3770112c59006] 5,334,602 8900984B
Chapter_3-Apply_Huggingface_for_Pre_Trained_Models\30. Question Answering (Coding).mp4 [28c44db0ba6962f7] 7,489,397 BC0B2EB5
Chapter_3-Apply_Huggingface_for_Pre_Trained_Models\31. Text Summarization (101).mp4 [29293ffb471df380] 6,074,783 E183A686
Chapter_3-Apply_Huggingface_for_Pre_Trained_Models\32. Text Summarization (Coding).mp4 [df726bae1f8aa2f3] 34,085,707 433AE4E6
Chapter_3-Apply_Huggingface_for_Pre_Trained_Models\33. Translation (101).mp4 [b0c5d74457ea5190] 4,870,008 EA80A380
Chapter_3-Apply_Huggingface_for_Pre_Trained_Models\34. Translation (Coding).mp4 [60d7906d4b035112] 8,285,525 149CF6FA
Chapter_3-Apply_Huggingface_for_Pre_Trained_Models\35. Fill-Mask (101).mp4 [94a1c2d946f43d28] 5,326,971 4C8D39AB
Chapter_3-Apply_Huggingface_for_Pre_Trained_Models\36. Fill-Mask (Coding).mp4 [d65fa027815b2815] 9,816,404 770800F7
Chapter_3-Apply_Huggingface_for_Pre_Trained_Models\37. Zero-Shot Text Classification (101).mp4 [6258ba9c27f23f55] 40,484,850 8615D773
Chapter_3-Apply_Huggingface_for_Pre_Trained_Models\38. Zero-Shot Text Classification (Coding).mp4 [6a173b6eb01527a6] 105,244,617 1AC05C00
Chapter_4-Model_Finetuning\39. Section Overview.mp4 [dd44dd19e2fa7893] 11,643,454 50AF24FC
Chapter_4-Model_Finetuning\40. Simple Model (101).mp4 [c872f6ec004f212d] 29,986,252 2E8A6054
Chapter_4-Model_Finetuning\41. Exploratory Data Analysis (Coding).mp4 [e714016b48bd2370] 58,512,669 6B365C2C
Chapter_4-Model_Finetuning\42. Simple Model (Coding).mp4 [20180d5ca39e1ef8] 130,210,375 265ED1E4
Chapter_4-Model_Finetuning\43. Finetuning Model (101).mp4 [a1ee79fd848e22b2] 20,789,390 57EA4387
Chapter_4-Model_Finetuning\44. Huggingface Trainer (101).mp4 [88d5a946b377d192] 7,537,080 D4FCD9A3
Chapter_4-Model_Finetuning\45. Finetuning Model (Coding).mp4 [94e4db611e06266f] 99,409,207 12C2D45C
Chapter_4-Model_Finetuning\46. Saving Model to huggingface Loading Model (Coding).mp4 [a27c080863726018] 40,604,173 F0D5AED0
Chapter_5-Vector_Databases\47. Vector Databases (101).mp4 [372eec707360f2fd] 40,560,464 1EE92920
Chapter_5-Vector_Databases\48. Tokenization (101).mp4 [5a29765451eb2982] 14,616,441 E697AFBD
Chapter_5-Vector_Databases\49. Tokenization (Practical).mp4 [f0186265c3c1a1e] 9,569,339 414668CE
Chapter_5-Vector_Databases\50. Tokenization (Coding).mp4 [91ed001126ce1ac8] 69,094,847 E224D2D1
Chapter_5-Vector_Databases\51. Bible Vector DB - The Full Picture.mp4 [701214b2aa0dab46] 3,557,310 A68701CF
Chapter_5-Vector_Databases\52. Bible Vector DB - Data Prep (Coding).mp4 [354cd944ebcfda99] 100,223,329 E318290E
Chapter_5-Vector_Databases\53. Bible Vector DB - Database Handling (Coding).mp4 [657a878784accc4b] 91,131,211 AD3C383E
Chapter_5-Vector_Databases\54. Exercise Movies Vector DB.mp4 [72eb2761cdcce01d] 16,354,051 94BDFF09
Chapter_5-Vector_Databases\55. Solution Movies Vector DB - Data Prep (Coding).mp4 [18d4e19824c6b770] 80,808,017 9C98E4EC
Chapter_5-Vector_Databases\56. Solution Movies Vector DB - DB-Setup (Coding).mp4 [8934441cedd31e85] 77,670,490 64065FCC
Chapter_5-Vector_Databases\57. Solution Movies Vector DB - Query Function (Coding).mp4 [81ed3931ec32fea8] 66,101,512 D5A0F944
Chapter_5-Vector_Databases\58. Multimodal Vector DB (101).mp4 [e162612f0e4697b3] 31,907,970 AC7E77B9
Chapter_5-Vector_Databases\59. Multimodal Vector DB Setup (Coding).mp4 [30e07f47556c5fda] 73,433,318 A090A65C
Chapter_5-Vector_Databases\60. Multimodal Vector DB Query (Coding).mp4 [205cb49d6fd2cd28] 92,021,404 B8387EBC
Chapter_6-OpenAI_API 0 00000000
Chapter_7-Prompt_Engineering 0 00000000
Chapter_8-Advanced_Prompt_Engineering 0 00000000
Chapter_9-Retrieval_Augmented_Generation_(RAG) 0 00000000
Chapter_10-Capstone_Project_Chatbot 0 00000000
Chapter_11-Open_Source_LLMs 0 00000000
Chapter_12-Data_Augmentation 0 00000000
Chapter_13-Miscellanious 0 00000000
Chapter_14-Final_Section 0 00000000
Chapter_1-Couse_Introduction 0 00000000
Chapter_2-NLP_Introduction 0 00000000
Chapter_3-Apply_Huggingface_for_Pre_Trained_Models 0 00000000
Chapter_4-Model_Finetuning 0 00000000
Chapter_5-Vector_Databases 0 00000000

Total size: 4,591,022,631
RAR Recovery
Not Present
Labels UNKNOWN