RAR-files |
sim-ucmlcwpy.rar |
100,000,000 |
D3A6AE31 |
sim-ucmlcwpy.r00 |
100,000,000 |
7B61E689 |
sim-ucmlcwpy.r01 |
100,000,000 |
BE52C7B4 |
sim-ucmlcwpy.r02 |
100,000,000 |
3FCFFF3C |
sim-ucmlcwpy.r03 |
100,000,000 |
E3EB2D8F |
sim-ucmlcwpy.r04 |
100,000,000 |
8D202803 |
sim-ucmlcwpy.r05 |
100,000,000 |
E7B9B2C8 |
sim-ucmlcwpy.r06 |
100,000,000 |
DAA65A70 |
sim-ucmlcwpy.r07 |
100,000,000 |
36714786 |
sim-ucmlcwpy.r08 |
100,000,000 |
EB1AA53D |
sim-ucmlcwpy.r09 |
100,000,000 |
03E1A1A5 |
sim-ucmlcwpy.r10 |
100,000,000 |
1E376EB7 |
sim-ucmlcwpy.r11 |
100,000,000 |
1C2F3DFB |
sim-ucmlcwpy.r12 |
100,000,000 |
2DDFBE06 |
sim-ucmlcwpy.r13 |
100,000,000 |
0C8DA426 |
sim-ucmlcwpy.r14 |
100,000,000 |
9FACA066 |
sim-ucmlcwpy.r15 |
100,000,000 |
44E5C28E |
sim-ucmlcwpy.r16 |
100,000,000 |
90957057 |
sim-ucmlcwpy.r17 |
100,000,000 |
2356FAAB |
sim-ucmlcwpy.r18 |
100,000,000 |
01A044C2 |
sim-ucmlcwpy.r19 |
100,000,000 |
35D964F9 |
sim-ucmlcwpy.r20 |
100,000,000 |
1DA6F8AF |
sim-ucmlcwpy.r21 |
100,000,000 |
A3CAD20A |
sim-ucmlcwpy.r22 |
100,000,000 |
132D7693 |
sim-ucmlcwpy.r23 |
100,000,000 |
6CCE0E77 |
sim-ucmlcwpy.r24 |
100,000,000 |
AD4430B2 |
sim-ucmlcwpy.r25 |
100,000,000 |
BA965495 |
sim-ucmlcwpy.r26 |
100,000,000 |
737EFB80 |
sim-ucmlcwpy.r27 |
100,000,000 |
7373FD2C |
sim-ucmlcwpy.r28 |
100,000,000 |
E997EF2C |
sim-ucmlcwpy.r29 |
100,000,000 |
8A52E5EC |
sim-ucmlcwpy.r30 |
100,000,000 |
7FFE1FCA |
sim-ucmlcwpy.r31 |
100,000,000 |
CC77B8B3 |
sim-ucmlcwpy.r32 |
100,000,000 |
5D71EC79 |
sim-ucmlcwpy.r33 |
100,000,000 |
B83EF246 |
sim-ucmlcwpy.r34 |
100,000,000 |
153225C2 |
sim-ucmlcwpy.r35 |
100,000,000 |
F5C133F8 |
sim-ucmlcwpy.r36 |
100,000,000 |
CB514911 |
sim-ucmlcwpy.r37 |
100,000,000 |
239DA5C6 |
sim-ucmlcwpy.r38 |
100,000,000 |
2F11C4CE |
sim-ucmlcwpy.r39 |
100,000,000 |
58E7D5B9 |
sim-ucmlcwpy.r40 |
100,000,000 |
D64A1A33 |
sim-ucmlcwpy.r41 |
100,000,000 |
C30F7C6D |
sim-ucmlcwpy.r42 |
100,000,000 |
64E079EC |
sim-ucmlcwpy.r43 |
100,000,000 |
262D6E67 |
sim-ucmlcwpy.r44 |
100,000,000 |
790C33FF |
sim-ucmlcwpy.r45 |
100,000,000 |
AE589D4C |
sim-ucmlcwpy.r46 |
100,000,000 |
C998D653 |
sim-ucmlcwpy.r47 |
100,000,000 |
41BC1697 |
sim-ucmlcwpy.r48 |
100,000,000 |
4B94048D |
sim-ucmlcwpy.r49 |
100,000,000 |
BB2006E1 |
sim-ucmlcwpy.r50 |
100,000,000 |
88428466 |
sim-ucmlcwpy.r51 |
100,000,000 |
D95B8DCA |
sim-ucmlcwpy.r52 |
100,000,000 |
13604625 |
sim-ucmlcwpy.r53 |
100,000,000 |
CCE61C65 |
sim-ucmlcwpy.r54 |
100,000,000 |
45EB4A9A |
sim-ucmlcwpy.r55 |
100,000,000 |
36E453D1 |
sim-ucmlcwpy.r56 |
100,000,000 |
32A5B9EE |
sim-ucmlcwpy.r57 |
100,000,000 |
C1D5E0C8 |
sim-ucmlcwpy.r58 |
100,000,000 |
96A8A3E4 |
sim-ucmlcwpy.r59 |
100,000,000 |
5742567E |
sim-ucmlcwpy.r60 |
100,000,000 |
AE404BAC |
sim-ucmlcwpy.r61 |
100,000,000 |
CA7F0C09 |
sim-ucmlcwpy.r62 |
100,000,000 |
C63D822D |
sim-ucmlcwpy.r63 |
100,000,000 |
93464BEE |
sim-ucmlcwpy.r64 |
100,000,000 |
A954B3E7 |
sim-ucmlcwpy.r65 |
100,000,000 |
017F85F4 |
sim-ucmlcwpy.r66 |
100,000,000 |
1A881652 |
sim-ucmlcwpy.r67 |
100,000,000 |
27B05A73 |
sim-ucmlcwpy.r68 |
100,000,000 |
6D1C301C |
sim-ucmlcwpy.r69 |
100,000,000 |
ABE24496 |
sim-ucmlcwpy.r70 |
100,000,000 |
171A1CEE |
sim-ucmlcwpy.r71 |
100,000,000 |
D02B52A2 |
sim-ucmlcwpy.r72 |
100,000,000 |
3AD006BC |
sim-ucmlcwpy.r73 |
100,000,000 |
F5E55235 |
sim-ucmlcwpy.r74 |
100,000,000 |
02DBCF57 |
sim-ucmlcwpy.r75 |
100,000,000 |
C8479C40 |
sim-ucmlcwpy.r76 |
100,000,000 |
DF304E11 |
sim-ucmlcwpy.r77 |
100,000,000 |
D49613F7 |
sim-ucmlcwpy.r78 |
100,000,000 |
F909058E |
sim-ucmlcwpy.r79 |
100,000,000 |
3C3ABDCC |
sim-ucmlcwpy.r80 |
100,000,000 |
83CADB18 |
sim-ucmlcwpy.r81 |
100,000,000 |
601F05AF |
sim-ucmlcwpy.r82 |
100,000,000 |
42E29F63 |
sim-ucmlcwpy.r83 |
100,000,000 |
039CA2C5 |
sim-ucmlcwpy.r84 |
100,000,000 |
A914A053 |
sim-ucmlcwpy.r85 |
100,000,000 |
86719421 |
sim-ucmlcwpy.r86 |
100,000,000 |
DF931C84 |
sim-ucmlcwpy.r87 |
100,000,000 |
2B7854BA |
sim-ucmlcwpy.r88 |
100,000,000 |
B15218B0 |
sim-ucmlcwpy.r89 |
100,000,000 |
6E763BB7 |
sim-ucmlcwpy.r90 |
100,000,000 |
888CE43E |
sim-ucmlcwpy.r91 |
31,211,051 |
18DDBA33 |
|
Total size: |
9,231,211,051 |
|
|
Archived
files |
1 - Introduction\1 - cars.csv |
38,998 |
C11B7142 |
1 - Introduction\1 - What Is Machine learning.mp4
[45f863650a68c9c5]
|
24,530,369 |
859047D2 |
1 - Introduction\1 - what-is-machine-learning.docx |
251,645 |
0AB142A1 |
1 - Introduction\2 - Key Skills needed to learn Machine learning.mp4
[a646ef13301b9f23]
|
6,645,664 |
414EE24E |
1 - Introduction\3 - Supervised learning vs Unsupervised Learning.mp4
[c6f0a52f1fa98727]
|
30,458,987 |
F3FDC305 |
1 - Introduction\4 - Dependent Variable vs Independent Variable.mp4
[65e1e5e74d7475c0]
|
23,673,166 |
7C464157 |
1 - Introduction\5 - What Does This Course Cover.mp4
[b8a4e1732a2ca4b7]
|
20,829,578 |
E70C5223 |
1 - Introduction\6 - Basic Python Concepts.mp4
[d19ea622b7b70063]
|
1,064,724,470 |
C697E2BE |
1 - Introduction\6 - Complete-basic-Python-in-90-mins.docx |
424,383 |
F0403DCC |
2 - Introduction to Machine Learning and Anaconda Installation\7 - 1.Introduction-to-Machine-Learning.docx |
111,816 |
76C24FC1 |
2 - Introduction to Machine Learning and Anaconda Installation\7 - Introduction to Machine Learning.mp4
[fca0fdbe56496522]
|
255,267,038 |
640E14B7 |
2 - Introduction to Machine Learning and Anaconda Installation\8 - Anaconda-installation-machine-learning.docx |
12,351 |
1F24D074 |
2 - Introduction to Machine Learning and Anaconda Installation\8 - Anconda Installation.mp4
[22be776b78228189]
|
175,464,848 |
C954049B |
3 - Exploratory Data Analysis\10 - knowing initial details of dataset.mp4
[8ab22c6775a50bf]
|
65,864,278 |
E0A9A5BF |
3 - Exploratory Data Analysis\11 - Modifying or removing unwanted data.mp4
[6c01a70aaa804f7]
|
54,005,780 |
23E8AB99 |
3 - Exploratory Data Analysis\12 - Retrieving Data.mp4
[9270d2441f3339a]
|
51,701,329 |
BED12BE3 |
3 - Exploratory Data Analysis\13 - Statistical Information.mp4
[e6e48dd3bd427309]
|
172,402,403 |
355B3BF6 |
3 - Exploratory Data Analysis\14 - Drawing Graphs.mp4
[ab5bce29cbee1f94]
|
272,784,980 |
819D754A |
3 - Exploratory Data Analysis\15 - EDA Assignment.mp4
[5edb0f7ba6a87619]
|
5,219,837 |
E81DCC9E |
3 - Exploratory Data Analysis\15 - titanic.csv |
61,194 |
84224229 |
3 - Exploratory Data Analysis\9 - 2.Exploratory-Data-Analysis.docx |
43,534 |
996A9140 |
3 - Exploratory Data Analysis\9 - What is Exploratory Data AnalysisEDA.mp4
[f94e97b823484a91]
|
48,986,459 |
8B27B6E4 |
4 - Outliers\16 - 3.Outliers.docx |
20,870 |
A0F63694 |
4 - Outliers\16 - solid-waste.csv |
618 |
8725D059 |
4 - Outliers\16 - What is Outliers.mp4
[396fb8e211c66f83]
|
22,661,857 |
7E955953 |
4 - Outliers\17 - Finding the Outliers.mp4
[1687b051226ad483]
|
100,574,814 |
D26E8CCF |
4 - Outliers\18 - IQR and handling the outliers.mp4
[63760ee732af91e]
|
254,301,416 |
E5EEDDD7 |
4 - Outliers\18 - Outliers-Assignment.docx |
11,456 |
7E30DD4A |
4 - Outliers\18 - solid-waste.csv |
618 |
8725D059 |
5 - Simple Linear Regression\19 - 4.Simple-Linear-Regression.docx |
56,504 |
8DB206F7 |
5 - Simple Linear Regression\19 - What is Regression.mp4
[fb46e5d296b1062b]
|
8,529,414 |
4D597153 |
5 - Simple Linear Regression\20 - What is simple liner regression model.mp4
[cdd9e2aab3457a00]
|
74,966,844 |
280D28A2 |
5 - Simple Linear Regression\21 - What is rsquared Value.mp4
[93fa7311afe81b74]
|
26,855,842 |
76DCB433 |
5 - Simple Linear Regression\22 - homeprices.csv |
71 |
A1F735E4 |
5 - Simple Linear Regression\22 - Simple linear regression Program1.mp4
[e700a92b27262613]
|
185,626,136 |
30422EE6 |
5 - Simple Linear Regression\23 - canada-percapita-Assignment.csv |
860 |
835EC702 |
5 - Simple Linear Regression\23 - salary-data.csv |
172 |
0FAE3320 |
5 - Simple Linear Regression\23 - Simple linear regression Program2train and test data.mp4
[7b70b047d310c7dd]
|
181,299,576 |
D8839DE3 |
6 - Multiple Linear Regression\24 - 5.Mutiple-Linear-Regression.docx |
21,165 |
1B027A7B |
6 - Multiple Linear Regression\24 - What is Multiple Linear Regression.mp4
[c3e54cc4c3447622]
|
136,811,722 |
CF5B6B66 |
6 - Multiple Linear Regression\25 - homeprices-2.csv |
130 |
32FA3817 |
6 - Multiple Linear Regression\25 - Housing.csv |
29,981 |
D7F371F8 |
6 - Multiple Linear Regression\25 - Multiple Linear Regression program 1.mp4
[f277ea9085262510]
|
244,825,132 |
920D8CF8 |
7 - One Hot Encoding\26 - 6.One-Hot-Encoding.docx |
20,835 |
E4A2402F |
7 - One Hot Encoding\26 - What Is One Hot Encoding.mp4
[6029a2be314b7b27]
|
25,298,551 |
CC3E67AF |
7 - One Hot Encoding\27 - One Hot EncodingFirst way.mp4
[efd486cf9606b7b7]
|
27,918,027 |
42DF08EB |
7 - One Hot Encoding\28 - One Hot EncodingSecond way.mp4
[ca76e3464a48f16d]
|
6,877,134 |
1F98E84E |
7 - One Hot Encoding\29 - homeprices-3.csv |
366 |
A1474C5A |
7 - One Hot Encoding\29 - One Hot EncodingProgram 1.mp4
[ee4baefb2c14184b]
|
270,452,858 |
AF997B93 |
7 - One Hot Encoding\30 - carprices-Assignment.csv |
378 |
E7E9A007 |
7 - One Hot Encoding\30 - homeprices-3.csv |
366 |
A1474C5A |
7 - One Hot Encoding\30 - One Hot EncodingProgram 2Third way.mp4
[57802b4d88f8b616]
|
144,115,460 |
CD0734E4 |
8 - Polynomial Linear Regression\31 - 7.Polynomial-Linear-Regression.docx |
31,013 |
38F5055C |
8 - Polynomial Linear Regression\31 - What is Polynomial Linear Regression.mp4
[1eea91dbcc369405]
|
26,945,793 |
335CD20B |
8 - Polynomial Linear Regression\32 - Polynomial Linear Regression Program1.mp4
[64b04eb9340bd334]
|
142,902,075 |
41F23491 |
8 - Polynomial Linear Regression\32 - salary-experience-Assignment.csv |
445 |
BBF52D92 |
8 - Polynomial Linear Regression\32 - salary-position.csv |
308 |
764F43FD |
9 - Ridge Regression\33 - 8.Ridge-Regression.docx |
125,546 |
1C2212DB |
9 - Ridge Regression\33 - What is Bias and Variance.mp4
[50bf8dc77edf6aca]
|
19,161,849 |
AD8A032F |
9 - Ridge Regression\34 - What is Regularization.mp4
[886b97887d2d3431]
|
22,218,959 |
FD429389 |
9 - Ridge Regression\35 - Ridge RegressionProgram 1.mp4
[3f0009133d45e3b9]
|
291,160,155 |
59C3DA6D |
9 - Ridge Regression\35 - test.csv |
55 |
4E953D88 |
9 - Ridge Regression\35 - train.csv |
59 |
B9C4E93F |
9 - Ridge Regression\36 - boston-houses.csv |
35,009 |
5EAA9E2A |
9 - Ridge Regression\36 - Ridge RegressionAssignment.mp4
[85638ae48caa9dc5]
|
9,968,303 |
C57DC3CD |
10 - Lasso Regression\37 - 9.Lasso-Regression.docx |
17,927 |
EF290FE9 |
10 - Lasso Regression\37 - Advertising-Assignment.csv |
4,756 |
9D875D5D |
10 - Lasso Regression\37 - boston-houses.csv |
35,009 |
5EAA9E2A |
10 - Lasso Regression\37 - What is Lasso regression and practice program1.mp4
[e957544f13d2251b]
|
290,086,050 |
92253CD0 |
11 - ElasticNet Regression\38 - 10.ElasticNet-Regression.mp4
[477f48015238eb8e]
|
360,057,575 |
338A6F98 |
11 - ElasticNet Regression\38 - boston-houses.csv |
35,009 |
5EAA9E2A |
11 - ElasticNet Regression\38 - diabetes-Assignment.csv |
23,875 |
6BEA1166 |
11 - ElasticNet Regression\38 - what is ElasticNet Regression and practice program1.mp4
[d3268bca8dae65dd]
|
277,857,562 |
252474BE |
12 - Logistic Regression\39 - 11.Logistic-Regression.docx |
19,076 |
3A55379A |
12 - Logistic Regression\39 - HR-comma.csv |
566,779 |
E07D9257 |
12 - Logistic Regression\39 - insurance-data-Assignment.csv |
155 |
C64A6B29 |
12 - Logistic Regression\39 - What is Logistic Regression and program1.mp4
[17e907f98f27563a]
|
327,672,572 |
779542C0 |
13 - Support Vector MachineSVM\40 - 12.Support-vector-machine-SVM.docx |
327,297 |
0478D288 |
13 - Support Vector MachineSVM\40 - What is Support Vector Machine.mp4
[acf310e3af9f2325]
|
320,811,067 |
45DF17C0 |
14 - Naive Bayes Classification\41 - 13.Naive-Bayes-Classification.docx |
26,645 |
9D7C994F |
14 - Naive Bayes Classification\41 - What is Naive Bayes Classification.mp4
[679be8dec861e8ab]
|
38,752,519 |
B626AB8D |
14 - Naive Bayes Classification\42 - cricket.csv |
438 |
B2227043 |
14 - Naive Bayes Classification\42 - Naive Bayes Classification Program1.mp4
[894375597aeff1d1]
|
114,953,331 |
A489835B |
14 - Naive Bayes Classification\43 - Naive Bayes Classification Program2.mp4
[d8866cb8a9527ed0]
|
290,446,834 |
B841EF18 |
14 - Naive Bayes Classification\43 - spam.csv |
502,566 |
C1E9F592 |
15 - KNN Classifier\44 - 14.KNN-Classifier.docx |
45,210 |
656318A2 |
15 - KNN Classifier\44 - breast-cancer.csv |
20,320 |
37EF46C2 |
15 - KNN Classifier\44 - diabetes-Assignment.csv |
23,875 |
6BEA1166 |
15 - KNN Classifier\44 - KNN Classifer defination and its practice program1.mp4
[79e4078f2a634b4]
|
259,081,345 |
305F02C7 |
16 - Decision Trees\45 - 15.Decision-Trees.docx |
71,856 |
A7A37105 |
16 - Decision Trees\45 - cricket.csv |
438 |
B2227043 |
16 - Decision Trees\45 - Decision Trees Defination and its program1.mp4
[b67732e8226f52ff]
|
229,428,373 |
1F3F4BB6 |
16 - Decision Trees\45 - salaries-Assignment.csv |
638 |
85944C79 |
17 - Random Forest\46 - 16.Random-Forest.docx |
268,082 |
26D2EB3D |
17 - Random Forest\46 - Random Forest Defination and its practice program1.mp4
[25fba6b1fe6c7886]
|
393,460,471 |
35C99403 |
17 - Random Forest\46 - salary-experience-Assignment.csv |
445 |
BBF52D92 |
18 - KMeans Clusteringunsupervised model\47 - 17.K-Means-Clustering.docx |
400,027 |
CEE27E03 |
18 - KMeans Clusteringunsupervised model\47 - What is KMeans Clustering.mp4
[ecba7e07e4bfd8de]
|
74,818,463 |
1F4A90C5 |
18 - KMeans Clusteringunsupervised model\48 - 17.K-Means-Clustering.docx |
400,027 |
CEE27E03 |
18 - KMeans Clusteringunsupervised model\48 - income.csv |
381 |
33C86824 |
18 - KMeans Clusteringunsupervised model\48 - KMeans Clustering Program1.mp4
[f4094a75f58b6905]
|
352,574,556 |
D92D42FC |
19 - Apriori Algorithm\49 - 18.Apriori-Algorithm.docx |
16,354 |
96B941A3 |
19 - Apriori Algorithm\49 - market.csv |
431,066 |
049A0B3D |
19 - Apriori Algorithm\49 - What is Apriori Algorithm.mp4
[b0ede68f9e7d9e23]
|
60,089,510 |
9643DC57 |
20 - Principle Component AnalysisPCA\50 - 19.Principal-Component-Analysis-PCA.docx |
68,014 |
DF255173 |
20 - Principle Component AnalysisPCA\50 - what is Principle Component AnalysisPCA.mp4
[50a5c5577162db23]
|
65,392,350 |
D32E0963 |
20 - Principle Component AnalysisPCA\51 - Principle Component Analysis Program1.mp4
[be4ae7f9d7aa677d]
|
295,170,953 |
EA08E6E4 |
20 - Principle Component AnalysisPCA\52 - Principle Component Analysis Program2.mp4
[e43866832875bfa3]
|
74,046,798 |
331EB697 |
20 - Principle Component AnalysisPCA\53 - Principle Component AnalysisAssignment.mp4
[79ff2f4b46b6012b]
|
7,570,120 |
19C5F229 |
21 - KFold Cross Validation\54 - 20.K-Fold-Cross-Validation.docx |
15,214 |
F24E01FE |
21 - KFold Cross Validation\54 - What is KFold Cross Validation.mp4
[499043b97e86a8c4]
|
39,107,363 |
FB04D014 |
21 - KFold Cross Validation\55 - KFold Cross Validation Program1.mp4
[1ba8f17ce7774a4a]
|
59,576,261 |
14469115 |
22 - Model Selection\56 - 21.Model-Selection.docx |
23,442 |
D260BFF8 |
22 - Model Selection\56 - What is Model Selection.mp4
[1cf14e0f5bf49135]
|
131,592,166 |
72EF8278 |
22 - Model Selection\57 - Model Selection Program1.mp4
[16a2df92c1a108c0]
|
398,242,297 |
0B5EB6A2 |
22 - Model Selection\57 - processed.csv |
11,325 |
74662E7B |
23 - Assignment Solutions\58 - Assignment Solutions.mp4
[d9e1bf89b4db6181]
|
1,252,609 |
B3D82126 |
23 - Assignment Solutions\58 - Decision-Trees-Assignment-solution.docx |
12,331 |
74BE6E8E |
23 - Assignment Solutions\58 - EDA-assignment-solution.docx |
13,794 |
8D325FCA |
23 - Assignment Solutions\58 - ElasticNet-Regression-Assignment-solution.docx |
12,886 |
EC743BB7 |
23 - Assignment Solutions\58 - K-Fold-Cross-Validation-Assignment-solution.docx |
11,946 |
A1028515 |
23 - Assignment Solutions\58 - K-Means-Clustering-Assignment-Solution.docx |
34,630 |
8069036A |
23 - Assignment Solutions\58 - KNN-Classifier-Assignment-Solution.docx |
14,197 |
4EA102CC |
23 - Assignment Solutions\58 - Lasso-regression-Assignment-Solution.docx |
13,367 |
1EA60C63 |
23 - Assignment Solutions\58 - Logistic-regression-Assignment-solution.docx |
31,559 |
FA87949C |
23 - Assignment Solutions\58 - Multiple-linear-regression-Assignment-solution.docx |
12,314 |
EB7E4485 |
23 - Assignment Solutions\58 - Naive-Bayes-classification-Assignment-solution.docx |
12,682 |
0CBAE315 |
23 - Assignment Solutions\58 - OneHotEncoding-Assignment-solution.docx |
14,209 |
E69ADB0E |
23 - Assignment Solutions\58 - Outlier-Assignment-solution.docx |
14,292 |
85800C3D |
23 - Assignment Solutions\58 - Polynomial-Linear-Regression-Assignment-solution.docx |
13,964 |
BA9BD8DD |
23 - Assignment Solutions\58 - Principle-component-analysis-Assignment-solution.docx |
49,451 |
09E6C4F2 |
23 - Assignment Solutions\58 - Random-Forest-Assignment-solution.docx |
27,776 |
C0A2C337 |
23 - Assignment Solutions\58 - Ridge-regression-assignment-solution.docx |
13,648 |
B4516B03 |
23 - Assignment Solutions\58 - Simple-Linear-Regression-Assignment-Solution.docx |
13,789 |
4DC55081 |
23 - Assignment Solutions\58 - support-Vector-Machine-SVM-Assignment-solution.docx |
13,404 |
031A7FDE |
1 - Introduction |
0 |
00000000 |
2 - Introduction to Machine Learning and Anaconda Installation |
0 |
00000000 |
3 - Exploratory Data Analysis |
0 |
00000000 |
4 - Outliers |
0 |
00000000 |
5 - Simple Linear Regression |
0 |
00000000 |
6 - Multiple Linear Regression |
0 |
00000000 |
7 - One Hot Encoding |
0 |
00000000 |
8 - Polynomial Linear Regression |
0 |
00000000 |
9 - Ridge Regression |
0 |
00000000 |
10 - Lasso Regression |
0 |
00000000 |
11 - ElasticNet Regression |
0 |
00000000 |
12 - Logistic Regression |
0 |
00000000 |
13 - Support Vector MachineSVM |
0 |
00000000 |
14 - Naive Bayes Classification |
0 |
00000000 |
15 - KNN Classifier |
0 |
00000000 |
16 - Decision Trees |
0 |
00000000 |
17 - Random Forest |
0 |
00000000 |
18 - KMeans Clusteringunsupervised model |
0 |
00000000 |
19 - Apriori Algorithm |
0 |
00000000 |
20 - Principle Component AnalysisPCA |
0 |
00000000 |
21 - KFold Cross Validation |
0 |
00000000 |
22 - Model Selection |
0 |
00000000 |
23 - Assignment Solutions |
0 |
00000000 |
|
Total size: |
8,963,059,479 |
|
|