"Custom RAR packer detected."
pirates being bad at copying ;)
―Gfy
  • Anonymous
  • 2024-05-09 09:34:44
  • Unknown

RELEASE >

ReScene version pyReScene Auto 0.7 SOFTiMAGE File size CRC
Download
45,981
Stored files
2,208 F34A5D34
2,511 ECFB4B5C
RAR-files
sim-ucmlcwpy.rar 100,000,000 D3A6AE31
sim-ucmlcwpy.r00 100,000,000 7B61E689
sim-ucmlcwpy.r01 100,000,000 BE52C7B4
sim-ucmlcwpy.r02 100,000,000 3FCFFF3C
sim-ucmlcwpy.r03 100,000,000 E3EB2D8F
sim-ucmlcwpy.r04 100,000,000 8D202803
sim-ucmlcwpy.r05 100,000,000 E7B9B2C8
sim-ucmlcwpy.r06 100,000,000 DAA65A70
sim-ucmlcwpy.r07 100,000,000 36714786
sim-ucmlcwpy.r08 100,000,000 EB1AA53D
sim-ucmlcwpy.r09 100,000,000 03E1A1A5
sim-ucmlcwpy.r10 100,000,000 1E376EB7
sim-ucmlcwpy.r11 100,000,000 1C2F3DFB
sim-ucmlcwpy.r12 100,000,000 2DDFBE06
sim-ucmlcwpy.r13 100,000,000 0C8DA426
sim-ucmlcwpy.r14 100,000,000 9FACA066
sim-ucmlcwpy.r15 100,000,000 44E5C28E
sim-ucmlcwpy.r16 100,000,000 90957057
sim-ucmlcwpy.r17 100,000,000 2356FAAB
sim-ucmlcwpy.r18 100,000,000 01A044C2
sim-ucmlcwpy.r19 100,000,000 35D964F9
sim-ucmlcwpy.r20 100,000,000 1DA6F8AF
sim-ucmlcwpy.r21 100,000,000 A3CAD20A
sim-ucmlcwpy.r22 100,000,000 132D7693
sim-ucmlcwpy.r23 100,000,000 6CCE0E77
sim-ucmlcwpy.r24 100,000,000 AD4430B2
sim-ucmlcwpy.r25 100,000,000 BA965495
sim-ucmlcwpy.r26 100,000,000 737EFB80
sim-ucmlcwpy.r27 100,000,000 7373FD2C
sim-ucmlcwpy.r28 100,000,000 E997EF2C
sim-ucmlcwpy.r29 100,000,000 8A52E5EC
sim-ucmlcwpy.r30 100,000,000 7FFE1FCA
sim-ucmlcwpy.r31 100,000,000 CC77B8B3
sim-ucmlcwpy.r32 100,000,000 5D71EC79
sim-ucmlcwpy.r33 100,000,000 B83EF246
sim-ucmlcwpy.r34 100,000,000 153225C2
sim-ucmlcwpy.r35 100,000,000 F5C133F8
sim-ucmlcwpy.r36 100,000,000 CB514911
sim-ucmlcwpy.r37 100,000,000 239DA5C6
sim-ucmlcwpy.r38 100,000,000 2F11C4CE
sim-ucmlcwpy.r39 100,000,000 58E7D5B9
sim-ucmlcwpy.r40 100,000,000 D64A1A33
sim-ucmlcwpy.r41 100,000,000 C30F7C6D
sim-ucmlcwpy.r42 100,000,000 64E079EC
sim-ucmlcwpy.r43 100,000,000 262D6E67
sim-ucmlcwpy.r44 100,000,000 790C33FF
sim-ucmlcwpy.r45 100,000,000 AE589D4C
sim-ucmlcwpy.r46 100,000,000 C998D653
sim-ucmlcwpy.r47 100,000,000 41BC1697
sim-ucmlcwpy.r48 100,000,000 4B94048D
sim-ucmlcwpy.r49 100,000,000 BB2006E1
sim-ucmlcwpy.r50 100,000,000 88428466
sim-ucmlcwpy.r51 100,000,000 D95B8DCA
sim-ucmlcwpy.r52 100,000,000 13604625
sim-ucmlcwpy.r53 100,000,000 CCE61C65
sim-ucmlcwpy.r54 100,000,000 45EB4A9A
sim-ucmlcwpy.r55 100,000,000 36E453D1
sim-ucmlcwpy.r56 100,000,000 32A5B9EE
sim-ucmlcwpy.r57 100,000,000 C1D5E0C8
sim-ucmlcwpy.r58 100,000,000 96A8A3E4
sim-ucmlcwpy.r59 100,000,000 5742567E
sim-ucmlcwpy.r60 100,000,000 AE404BAC
sim-ucmlcwpy.r61 100,000,000 CA7F0C09
sim-ucmlcwpy.r62 100,000,000 C63D822D
sim-ucmlcwpy.r63 100,000,000 93464BEE
sim-ucmlcwpy.r64 100,000,000 A954B3E7
sim-ucmlcwpy.r65 100,000,000 017F85F4
sim-ucmlcwpy.r66 100,000,000 1A881652
sim-ucmlcwpy.r67 100,000,000 27B05A73
sim-ucmlcwpy.r68 100,000,000 6D1C301C
sim-ucmlcwpy.r69 100,000,000 ABE24496
sim-ucmlcwpy.r70 100,000,000 171A1CEE
sim-ucmlcwpy.r71 100,000,000 D02B52A2
sim-ucmlcwpy.r72 100,000,000 3AD006BC
sim-ucmlcwpy.r73 100,000,000 F5E55235
sim-ucmlcwpy.r74 100,000,000 02DBCF57
sim-ucmlcwpy.r75 100,000,000 C8479C40
sim-ucmlcwpy.r76 100,000,000 DF304E11
sim-ucmlcwpy.r77 100,000,000 D49613F7
sim-ucmlcwpy.r78 100,000,000 F909058E
sim-ucmlcwpy.r79 100,000,000 3C3ABDCC
sim-ucmlcwpy.r80 100,000,000 83CADB18
sim-ucmlcwpy.r81 100,000,000 601F05AF
sim-ucmlcwpy.r82 100,000,000 42E29F63
sim-ucmlcwpy.r83 100,000,000 039CA2C5
sim-ucmlcwpy.r84 100,000,000 A914A053
sim-ucmlcwpy.r85 100,000,000 86719421
sim-ucmlcwpy.r86 100,000,000 DF931C84
sim-ucmlcwpy.r87 100,000,000 2B7854BA
sim-ucmlcwpy.r88 100,000,000 B15218B0
sim-ucmlcwpy.r89 100,000,000 6E763BB7
sim-ucmlcwpy.r90 100,000,000 888CE43E
sim-ucmlcwpy.r91 31,211,051 18DDBA33

Total size: 9,231,211,051
Archived files
1 - Introduction\1 - cars.csv 38,998 C11B7142
1 - Introduction\1 - What Is Machine learning.mp4 [45f863650a68c9c5] 24,530,369 859047D2
1 - Introduction\1 - what-is-machine-learning.docx 251,645 0AB142A1
1 - Introduction\2 - Key Skills needed to learn Machine learning.mp4 [a646ef13301b9f23] 6,645,664 414EE24E
1 - Introduction\3 - Supervised learning vs Unsupervised Learning.mp4 [c6f0a52f1fa98727] 30,458,987 F3FDC305
1 - Introduction\4 - Dependent Variable vs Independent Variable.mp4 [65e1e5e74d7475c0] 23,673,166 7C464157
1 - Introduction\5 - What Does This Course Cover.mp4 [b8a4e1732a2ca4b7] 20,829,578 E70C5223
1 - Introduction\6 - Basic Python Concepts.mp4 [d19ea622b7b70063] 1,064,724,470 C697E2BE
1 - Introduction\6 - Complete-basic-Python-in-90-mins.docx 424,383 F0403DCC
2 - Introduction to Machine Learning and Anaconda Installation\7 - 1.Introduction-to-Machine-Learning.docx 111,816 76C24FC1
2 - Introduction to Machine Learning and Anaconda Installation\7 - Introduction to Machine Learning.mp4 [fca0fdbe56496522] 255,267,038 640E14B7
2 - Introduction to Machine Learning and Anaconda Installation\8 - Anaconda-installation-machine-learning.docx 12,351 1F24D074
2 - Introduction to Machine Learning and Anaconda Installation\8 - Anconda Installation.mp4 [22be776b78228189] 175,464,848 C954049B
3 - Exploratory Data Analysis\10 - knowing initial details of dataset.mp4 [8ab22c6775a50bf] 65,864,278 E0A9A5BF
3 - Exploratory Data Analysis\11 - Modifying or removing unwanted data.mp4 [6c01a70aaa804f7] 54,005,780 23E8AB99
3 - Exploratory Data Analysis\12 - Retrieving Data.mp4 [9270d2441f3339a] 51,701,329 BED12BE3
3 - Exploratory Data Analysis\13 - Statistical Information.mp4 [e6e48dd3bd427309] 172,402,403 355B3BF6
3 - Exploratory Data Analysis\14 - Drawing Graphs.mp4 [ab5bce29cbee1f94] 272,784,980 819D754A
3 - Exploratory Data Analysis\15 - EDA Assignment.mp4 [5edb0f7ba6a87619] 5,219,837 E81DCC9E
3 - Exploratory Data Analysis\15 - titanic.csv 61,194 84224229
3 - Exploratory Data Analysis\9 - 2.Exploratory-Data-Analysis.docx 43,534 996A9140
3 - Exploratory Data Analysis\9 - What is Exploratory Data AnalysisEDA.mp4 [f94e97b823484a91] 48,986,459 8B27B6E4
4 - Outliers\16 - 3.Outliers.docx 20,870 A0F63694
4 - Outliers\16 - solid-waste.csv 618 8725D059
4 - Outliers\16 - What is Outliers.mp4 [396fb8e211c66f83] 22,661,857 7E955953
4 - Outliers\17 - Finding the Outliers.mp4 [1687b051226ad483] 100,574,814 D26E8CCF
4 - Outliers\18 - IQR and handling the outliers.mp4 [63760ee732af91e] 254,301,416 E5EEDDD7
4 - Outliers\18 - Outliers-Assignment.docx 11,456 7E30DD4A
4 - Outliers\18 - solid-waste.csv 618 8725D059
5 - Simple Linear Regression\19 - 4.Simple-Linear-Regression.docx 56,504 8DB206F7
5 - Simple Linear Regression\19 - What is Regression.mp4 [fb46e5d296b1062b] 8,529,414 4D597153
5 - Simple Linear Regression\20 - What is simple liner regression model.mp4 [cdd9e2aab3457a00] 74,966,844 280D28A2
5 - Simple Linear Regression\21 - What is rsquared Value.mp4 [93fa7311afe81b74] 26,855,842 76DCB433
5 - Simple Linear Regression\22 - homeprices.csv 71 A1F735E4
5 - Simple Linear Regression\22 - Simple linear regression Program1.mp4 [e700a92b27262613] 185,626,136 30422EE6
5 - Simple Linear Regression\23 - canada-percapita-Assignment.csv 860 835EC702
5 - Simple Linear Regression\23 - salary-data.csv 172 0FAE3320
5 - Simple Linear Regression\23 - Simple linear regression Program2train and test data.mp4 [7b70b047d310c7dd] 181,299,576 D8839DE3
6 - Multiple Linear Regression\24 - 5.Mutiple-Linear-Regression.docx 21,165 1B027A7B
6 - Multiple Linear Regression\24 - What is Multiple Linear Regression.mp4 [c3e54cc4c3447622] 136,811,722 CF5B6B66
6 - Multiple Linear Regression\25 - homeprices-2.csv 130 32FA3817
6 - Multiple Linear Regression\25 - Housing.csv 29,981 D7F371F8
6 - Multiple Linear Regression\25 - Multiple Linear Regression program 1.mp4 [f277ea9085262510] 244,825,132 920D8CF8
7 - One Hot Encoding\26 - 6.One-Hot-Encoding.docx 20,835 E4A2402F
7 - One Hot Encoding\26 - What Is One Hot Encoding.mp4 [6029a2be314b7b27] 25,298,551 CC3E67AF
7 - One Hot Encoding\27 - One Hot EncodingFirst way.mp4 [efd486cf9606b7b7] 27,918,027 42DF08EB
7 - One Hot Encoding\28 - One Hot EncodingSecond way.mp4 [ca76e3464a48f16d] 6,877,134 1F98E84E
7 - One Hot Encoding\29 - homeprices-3.csv 366 A1474C5A
7 - One Hot Encoding\29 - One Hot EncodingProgram 1.mp4 [ee4baefb2c14184b] 270,452,858 AF997B93
7 - One Hot Encoding\30 - carprices-Assignment.csv 378 E7E9A007
7 - One Hot Encoding\30 - homeprices-3.csv 366 A1474C5A
7 - One Hot Encoding\30 - One Hot EncodingProgram 2Third way.mp4 [57802b4d88f8b616] 144,115,460 CD0734E4
8 - Polynomial Linear Regression\31 - 7.Polynomial-Linear-Regression.docx 31,013 38F5055C
8 - Polynomial Linear Regression\31 - What is Polynomial Linear Regression.mp4 [1eea91dbcc369405] 26,945,793 335CD20B
8 - Polynomial Linear Regression\32 - Polynomial Linear Regression Program1.mp4 [64b04eb9340bd334] 142,902,075 41F23491
8 - Polynomial Linear Regression\32 - salary-experience-Assignment.csv 445 BBF52D92
8 - Polynomial Linear Regression\32 - salary-position.csv 308 764F43FD
9 - Ridge Regression\33 - 8.Ridge-Regression.docx 125,546 1C2212DB
9 - Ridge Regression\33 - What is Bias and Variance.mp4 [50bf8dc77edf6aca] 19,161,849 AD8A032F
9 - Ridge Regression\34 - What is Regularization.mp4 [886b97887d2d3431] 22,218,959 FD429389
9 - Ridge Regression\35 - Ridge RegressionProgram 1.mp4 [3f0009133d45e3b9] 291,160,155 59C3DA6D
9 - Ridge Regression\35 - test.csv 55 4E953D88
9 - Ridge Regression\35 - train.csv 59 B9C4E93F
9 - Ridge Regression\36 - boston-houses.csv 35,009 5EAA9E2A
9 - Ridge Regression\36 - Ridge RegressionAssignment.mp4 [85638ae48caa9dc5] 9,968,303 C57DC3CD
10 - Lasso Regression\37 - 9.Lasso-Regression.docx 17,927 EF290FE9
10 - Lasso Regression\37 - Advertising-Assignment.csv 4,756 9D875D5D
10 - Lasso Regression\37 - boston-houses.csv 35,009 5EAA9E2A
10 - Lasso Regression\37 - What is Lasso regression and practice program1.mp4 [e957544f13d2251b] 290,086,050 92253CD0
11 - ElasticNet Regression\38 - 10.ElasticNet-Regression.mp4 [477f48015238eb8e] 360,057,575 338A6F98
11 - ElasticNet Regression\38 - boston-houses.csv 35,009 5EAA9E2A
11 - ElasticNet Regression\38 - diabetes-Assignment.csv 23,875 6BEA1166
11 - ElasticNet Regression\38 - what is ElasticNet Regression and practice program1.mp4 [d3268bca8dae65dd] 277,857,562 252474BE
12 - Logistic Regression\39 - 11.Logistic-Regression.docx 19,076 3A55379A
12 - Logistic Regression\39 - HR-comma.csv 566,779 E07D9257
12 - Logistic Regression\39 - insurance-data-Assignment.csv 155 C64A6B29
12 - Logistic Regression\39 - What is Logistic Regression and program1.mp4 [17e907f98f27563a] 327,672,572 779542C0
13 - Support Vector MachineSVM\40 - 12.Support-vector-machine-SVM.docx 327,297 0478D288
13 - Support Vector MachineSVM\40 - What is Support Vector Machine.mp4 [acf310e3af9f2325] 320,811,067 45DF17C0
14 - Naive Bayes Classification\41 - 13.Naive-Bayes-Classification.docx 26,645 9D7C994F
14 - Naive Bayes Classification\41 - What is Naive Bayes Classification.mp4 [679be8dec861e8ab] 38,752,519 B626AB8D
14 - Naive Bayes Classification\42 - cricket.csv 438 B2227043
14 - Naive Bayes Classification\42 - Naive Bayes Classification Program1.mp4 [894375597aeff1d1] 114,953,331 A489835B
14 - Naive Bayes Classification\43 - Naive Bayes Classification Program2.mp4 [d8866cb8a9527ed0] 290,446,834 B841EF18
14 - Naive Bayes Classification\43 - spam.csv 502,566 C1E9F592
15 - KNN Classifier\44 - 14.KNN-Classifier.docx 45,210 656318A2
15 - KNN Classifier\44 - breast-cancer.csv 20,320 37EF46C2
15 - KNN Classifier\44 - diabetes-Assignment.csv 23,875 6BEA1166
15 - KNN Classifier\44 - KNN Classifer defination and its practice program1.mp4 [79e4078f2a634b4] 259,081,345 305F02C7
16 - Decision Trees\45 - 15.Decision-Trees.docx 71,856 A7A37105
16 - Decision Trees\45 - cricket.csv 438 B2227043
16 - Decision Trees\45 - Decision Trees Defination and its program1.mp4 [b67732e8226f52ff] 229,428,373 1F3F4BB6
16 - Decision Trees\45 - salaries-Assignment.csv 638 85944C79
17 - Random Forest\46 - 16.Random-Forest.docx 268,082 26D2EB3D
17 - Random Forest\46 - Random Forest Defination and its practice program1.mp4 [25fba6b1fe6c7886] 393,460,471 35C99403
17 - Random Forest\46 - salary-experience-Assignment.csv 445 BBF52D92
18 - KMeans Clusteringunsupervised model\47 - 17.K-Means-Clustering.docx 400,027 CEE27E03
18 - KMeans Clusteringunsupervised model\47 - What is KMeans Clustering.mp4 [ecba7e07e4bfd8de] 74,818,463 1F4A90C5
18 - KMeans Clusteringunsupervised model\48 - 17.K-Means-Clustering.docx 400,027 CEE27E03
18 - KMeans Clusteringunsupervised model\48 - income.csv 381 33C86824
18 - KMeans Clusteringunsupervised model\48 - KMeans Clustering Program1.mp4 [f4094a75f58b6905] 352,574,556 D92D42FC
19 - Apriori Algorithm\49 - 18.Apriori-Algorithm.docx 16,354 96B941A3
19 - Apriori Algorithm\49 - market.csv 431,066 049A0B3D
19 - Apriori Algorithm\49 - What is Apriori Algorithm.mp4 [b0ede68f9e7d9e23] 60,089,510 9643DC57
20 - Principle Component AnalysisPCA\50 - 19.Principal-Component-Analysis-PCA.docx 68,014 DF255173
20 - Principle Component AnalysisPCA\50 - what is Principle Component AnalysisPCA.mp4 [50a5c5577162db23] 65,392,350 D32E0963
20 - Principle Component AnalysisPCA\51 - Principle Component Analysis Program1.mp4 [be4ae7f9d7aa677d] 295,170,953 EA08E6E4
20 - Principle Component AnalysisPCA\52 - Principle Component Analysis Program2.mp4 [e43866832875bfa3] 74,046,798 331EB697
20 - Principle Component AnalysisPCA\53 - Principle Component AnalysisAssignment.mp4 [79ff2f4b46b6012b] 7,570,120 19C5F229
21 - KFold Cross Validation\54 - 20.K-Fold-Cross-Validation.docx 15,214 F24E01FE
21 - KFold Cross Validation\54 - What is KFold Cross Validation.mp4 [499043b97e86a8c4] 39,107,363 FB04D014
21 - KFold Cross Validation\55 - KFold Cross Validation Program1.mp4 [1ba8f17ce7774a4a] 59,576,261 14469115
22 - Model Selection\56 - 21.Model-Selection.docx 23,442 D260BFF8
22 - Model Selection\56 - What is Model Selection.mp4 [1cf14e0f5bf49135] 131,592,166 72EF8278
22 - Model Selection\57 - Model Selection Program1.mp4 [16a2df92c1a108c0] 398,242,297 0B5EB6A2
22 - Model Selection\57 - processed.csv 11,325 74662E7B
23 - Assignment Solutions\58 - Assignment Solutions.mp4 [d9e1bf89b4db6181] 1,252,609 B3D82126
23 - Assignment Solutions\58 - Decision-Trees-Assignment-solution.docx 12,331 74BE6E8E
23 - Assignment Solutions\58 - EDA-assignment-solution.docx 13,794 8D325FCA
23 - Assignment Solutions\58 - ElasticNet-Regression-Assignment-solution.docx 12,886 EC743BB7
23 - Assignment Solutions\58 - K-Fold-Cross-Validation-Assignment-solution.docx 11,946 A1028515
23 - Assignment Solutions\58 - K-Means-Clustering-Assignment-Solution.docx 34,630 8069036A
23 - Assignment Solutions\58 - KNN-Classifier-Assignment-Solution.docx 14,197 4EA102CC
23 - Assignment Solutions\58 - Lasso-regression-Assignment-Solution.docx 13,367 1EA60C63
23 - Assignment Solutions\58 - Logistic-regression-Assignment-solution.docx 31,559 FA87949C
23 - Assignment Solutions\58 - Multiple-linear-regression-Assignment-solution.docx 12,314 EB7E4485
23 - Assignment Solutions\58 - Naive-Bayes-classification-Assignment-solution.docx 12,682 0CBAE315
23 - Assignment Solutions\58 - OneHotEncoding-Assignment-solution.docx 14,209 E69ADB0E
23 - Assignment Solutions\58 - Outlier-Assignment-solution.docx 14,292 85800C3D
23 - Assignment Solutions\58 - Polynomial-Linear-Regression-Assignment-solution.docx 13,964 BA9BD8DD
23 - Assignment Solutions\58 - Principle-component-analysis-Assignment-solution.docx 49,451 09E6C4F2
23 - Assignment Solutions\58 - Random-Forest-Assignment-solution.docx 27,776 C0A2C337
23 - Assignment Solutions\58 - Ridge-regression-assignment-solution.docx 13,648 B4516B03
23 - Assignment Solutions\58 - Simple-Linear-Regression-Assignment-Solution.docx 13,789 4DC55081
23 - Assignment Solutions\58 - support-Vector-Machine-SVM-Assignment-solution.docx 13,404 031A7FDE
1 - Introduction 0 00000000
2 - Introduction to Machine Learning and Anaconda Installation 0 00000000
3 - Exploratory Data Analysis 0 00000000
4 - Outliers 0 00000000
5 - Simple Linear Regression 0 00000000
6 - Multiple Linear Regression 0 00000000
7 - One Hot Encoding 0 00000000
8 - Polynomial Linear Regression 0 00000000
9 - Ridge Regression 0 00000000
10 - Lasso Regression 0 00000000
11 - ElasticNet Regression 0 00000000
12 - Logistic Regression 0 00000000
13 - Support Vector MachineSVM 0 00000000
14 - Naive Bayes Classification 0 00000000
15 - KNN Classifier 0 00000000
16 - Decision Trees 0 00000000
17 - Random Forest 0 00000000
18 - KMeans Clusteringunsupervised model 0 00000000
19 - Apriori Algorithm 0 00000000
20 - Principle Component AnalysisPCA 0 00000000
21 - KFold Cross Validation 0 00000000
22 - Model Selection 0 00000000
23 - Assignment Solutions 0 00000000

Total size: 8,963,059,479
RAR Recovery
Present (Protect+) 268,117,544
Labels UNKNOWN