RAR-files |
sim-udsipcm.rar |
50,000,000 |
94D7ED28 |
sim-udsipcm.r00 |
50,000,000 |
C896E701 |
sim-udsipcm.r01 |
50,000,000 |
0C3552A4 |
sim-udsipcm.r02 |
50,000,000 |
B4C236B7 |
sim-udsipcm.r03 |
50,000,000 |
627D484A |
sim-udsipcm.r04 |
50,000,000 |
6FADC3E9 |
sim-udsipcm.r05 |
50,000,000 |
3E042D5E |
sim-udsipcm.r06 |
50,000,000 |
12093255 |
sim-udsipcm.r07 |
50,000,000 |
5AD02F6E |
sim-udsipcm.r08 |
50,000,000 |
59A3C203 |
sim-udsipcm.r09 |
50,000,000 |
6CC113E3 |
sim-udsipcm.r10 |
50,000,000 |
D5CB8663 |
sim-udsipcm.r11 |
50,000,000 |
2D5FA797 |
sim-udsipcm.r12 |
50,000,000 |
208475D7 |
sim-udsipcm.r13 |
50,000,000 |
5B275A6A |
sim-udsipcm.r14 |
50,000,000 |
C48968E8 |
sim-udsipcm.r15 |
50,000,000 |
BB65CF6D |
sim-udsipcm.r16 |
50,000,000 |
6C53843B |
sim-udsipcm.r17 |
50,000,000 |
D959144A |
sim-udsipcm.r18 |
50,000,000 |
E866DEB0 |
sim-udsipcm.r19 |
50,000,000 |
0E40F29E |
sim-udsipcm.r20 |
50,000,000 |
1D74990A |
sim-udsipcm.r21 |
50,000,000 |
76C6E65A |
sim-udsipcm.r22 |
50,000,000 |
8C2C3772 |
sim-udsipcm.r23 |
50,000,000 |
F22AF33D |
sim-udsipcm.r24 |
50,000,000 |
31BCE668 |
sim-udsipcm.r25 |
50,000,000 |
925C00C2 |
sim-udsipcm.r26 |
50,000,000 |
78DECA4C |
sim-udsipcm.r27 |
50,000,000 |
9ED26439 |
sim-udsipcm.r28 |
50,000,000 |
ADC44591 |
sim-udsipcm.r29 |
50,000,000 |
DD8909DC |
sim-udsipcm.r30 |
50,000,000 |
F2E971FA |
sim-udsipcm.r31 |
50,000,000 |
A6DBB0CC |
sim-udsipcm.r32 |
50,000,000 |
1A630768 |
sim-udsipcm.r33 |
50,000,000 |
05107949 |
sim-udsipcm.r34 |
50,000,000 |
617D5CB1 |
sim-udsipcm.r35 |
50,000,000 |
77B4B0A8 |
sim-udsipcm.r36 |
50,000,000 |
E4DFC330 |
sim-udsipcm.r37 |
50,000,000 |
1F323F08 |
sim-udsipcm.r38 |
50,000,000 |
5B4AA77E |
sim-udsipcm.r39 |
50,000,000 |
BF601019 |
sim-udsipcm.r40 |
50,000,000 |
B6758458 |
sim-udsipcm.r41 |
50,000,000 |
96C5DA34 |
sim-udsipcm.r42 |
50,000,000 |
7B78B92B |
sim-udsipcm.r43 |
50,000,000 |
CDB3549A |
sim-udsipcm.r44 |
50,000,000 |
9B846333 |
sim-udsipcm.r45 |
50,000,000 |
D70D07E4 |
sim-udsipcm.r46 |
50,000,000 |
73D67244 |
sim-udsipcm.r47 |
50,000,000 |
47B93D6D |
sim-udsipcm.r48 |
50,000,000 |
B36A9215 |
sim-udsipcm.r49 |
50,000,000 |
651F7885 |
sim-udsipcm.r50 |
50,000,000 |
7000DB7D |
sim-udsipcm.r51 |
50,000,000 |
2D8B3124 |
sim-udsipcm.r52 |
50,000,000 |
381CCE6E |
sim-udsipcm.r53 |
50,000,000 |
FBC90F0F |
sim-udsipcm.r54 |
50,000,000 |
86D56D3D |
sim-udsipcm.r55 |
50,000,000 |
F022A81C |
sim-udsipcm.r56 |
50,000,000 |
83786093 |
sim-udsipcm.r57 |
50,000,000 |
6093E110 |
sim-udsipcm.r58 |
50,000,000 |
67E75977 |
sim-udsipcm.r59 |
50,000,000 |
88BB5410 |
sim-udsipcm.r60 |
50,000,000 |
28FE7D78 |
sim-udsipcm.r61 |
50,000,000 |
806DC0D3 |
sim-udsipcm.r62 |
50,000,000 |
F7D31291 |
sim-udsipcm.r63 |
50,000,000 |
02D39D03 |
sim-udsipcm.r64 |
50,000,000 |
A7F3B081 |
sim-udsipcm.r65 |
50,000,000 |
104269F5 |
sim-udsipcm.r66 |
50,000,000 |
8AD5A4D4 |
sim-udsipcm.r67 |
50,000,000 |
54533203 |
sim-udsipcm.r68 |
50,000,000 |
48B90C18 |
sim-udsipcm.r69 |
50,000,000 |
C37F2DF3 |
sim-udsipcm.r70 |
50,000,000 |
C5A4B1A9 |
sim-udsipcm.r71 |
50,000,000 |
B1A19E96 |
sim-udsipcm.r72 |
50,000,000 |
B587A961 |
sim-udsipcm.r73 |
50,000,000 |
BFB2F4E6 |
sim-udsipcm.r74 |
50,000,000 |
4647C443 |
sim-udsipcm.r75 |
50,000,000 |
5633E9F3 |
sim-udsipcm.r76 |
50,000,000 |
CA67C7DF |
sim-udsipcm.r77 |
50,000,000 |
1EFA3F41 |
sim-udsipcm.r78 |
50,000,000 |
F3963737 |
sim-udsipcm.r79 |
21,129,754 |
9AE08F3E |
|
Total size: |
4,021,129,754 |
|
|
Archived
files |
2. Intro to Data Science\1. What is Data Science.mp4
[648c5ab573eddf0a]
|
12,870,084 |
1F1B404B |
2. Intro to Data Science\10. Intro to Data Science.html |
148 |
0FD60DBA |
2. Intro to Data Science\2. The Data Science Skillset.mp4
[f2dffe21ecf9a3a5]
|
7,634,012 |
D89653F5 |
2. Intro to Data Science\3. What is Machine Learning.mp4
[cb8a71fc58efc5aa]
|
14,628,083 |
E39EDA4F |
2. Intro to Data Science\4. Common Machine Learning Algorithms.mp4
[a432b85c2170693b]
|
10,838,338 |
DC54DEA7 |
2. Intro to Data Science\5. Data Science Workflow.mp4
[20ed7b6366e1efd5]
|
5,808,840 |
62E21BAB |
2. Intro to Data Science\6. Data Prep & EDA Steps.mp4
[721b9b53f26ca53c]
|
20,966,456 |
74018D24 |
2. Intro to Data Science\7. Modeling Steps.mp4
[89bdfaa30715f914]
|
17,988,809 |
6A28F1C7 |
2. Intro to Data Science\8. Classification Modeling.mp4
[d4281b941a38cb33]
|
3,739,686 |
A2F36202 |
2. Intro to Data Science\9. Key Takeaways.mp4
[5a73a451687a21a1]
|
7,951,074 |
43D6F01C |
3. Classification 101\1. Classification 101.mp4
[ac8abcf50de6f9ac]
|
30,664,819 |
6F62DA8B |
3. Classification 101\2. Goals of Classification.mp4
[b36336ad391fbff4]
|
10,956,654 |
1D1A8CFC |
3. Classification 101\3. Types of Classification.mp4
[5ff16400fc8d76e2]
|
11,043,572 |
DE9B8C9B |
3. Classification 101\4. Classification Modeling Workflow.mp4
[e0babeea094cded6]
|
14,597,631 |
D4F1A647 |
3. Classification 101\5. Key Takeaways.mp4
[9e8529a2af10b583]
|
8,256,521 |
F61D2CCA |
3. Classification 101\6. Classification 101.html |
148 |
2F138002 |
4. Data Prep & EDA\1. EDA For Classification.mp4
[d5c6ec631e2dede8]
|
19,028,220 |
8A7CE50F |
4. Data Prep & EDA\10. PRO TIP Correlation Matrix.mp4
[21a2c87928b9bdba]
|
13,182,616 |
7B05B966 |
4. Data Prep & EDA\11. DEMO Correlation Matrix.mp4
[513ef7f5ac3da50c]
|
32,863,969 |
9FC56FE0 |
4. Data Prep & EDA\12. Feature-Target Relationships.mp4
[606dcba55f8b4c6b]
|
38,895,127 |
7585A327 |
4. Data Prep & EDA\13. Feature-Feature Relationships.mp4
[10db19a06aff320]
|
14,585,686 |
6227591D |
4. Data Prep & EDA\14. PRO TIP Pair Plots.mp4
[68181c9e30cd0a02]
|
45,856,168 |
E9E35F68 |
4. Data Prep & EDA\15. ASSIGNMENT Exploring Relationships.mp4
[226d2c81a57402b3]
|
12,227,564 |
46AD9D11 |
4. Data Prep & EDA\16. SOLUTION Exploring Relationships.mp4
[9c93e3dea2f86ee7]
|
53,709,465 |
B28F8C77 |
4. Data Prep & EDA\17. Feature Engineering Overview.mp4
[b3dd4914ffe1cca]
|
25,228,937 |
AF354D8E |
4. Data Prep & EDA\18. Numeric Feature Engineering.mp4
[dcbb64071e4ab84a]
|
23,978,715 |
D61DD3DF |
4. Data Prep & EDA\19. Dummy Variables.mp4
[3fb3bb9ea8f48622]
|
25,730,226 |
D2D9F682 |
4. Data Prep & EDA\2. Defining a Target.mp4
[5eee10d64f018d40]
|
22,959,256 |
60C55E42 |
4. Data Prep & EDA\20. Binning Categories.mp4
[28b7164045709c1b]
|
20,223,591 |
7D709FEB |
4. Data Prep & EDA\21. DEMO Feature Engineering.mp4
[1df908de70f00c24]
|
46,794,806 |
6C28179B |
4. Data Prep & EDA\22. Data Splitting.mp4
[929081f91b9ef675]
|
33,222,477 |
76AE3D54 |
4. Data Prep & EDA\23. Preparing Data for Modeling.mp4
[389a4ce0c81690d5]
|
9,927,430 |
EF6F3682 |
4. Data Prep & EDA\24. ASSIGNMENT Preparing the Data for Modeling.mp4
[3bed9fc9ee110d12]
|
7,920,129 |
3B81DCAB |
4. Data Prep & EDA\25. SOLUTION Prepare the Data for Modeling.mp4
[f3cc6e5e91d7aa49]
|
60,088,473 |
DFAED338 |
4. Data Prep & EDA\26. Key Takeaways.mp4
[e5a40f55beb8c944]
|
7,638,381 |
9F307EDE |
4. Data Prep & EDA\27. Data Prep & EDA.html |
148 |
6986CE0F |
4. Data Prep & EDA\3. DEMO Defining a Target.mp4
[4a58010bf723a3b2]
|
38,001,454 |
B96F63C4 |
4. Data Prep & EDA\4. Exploring the Target.mp4
[b896df8ea09f2281]
|
20,604,877 |
A1DE018D |
4. Data Prep & EDA\5. Exploring the Features.mp4
[651d6e13d6d5e226]
|
10,893,463 |
5ADBF5B9 |
4. Data Prep & EDA\6. DEMO Exploring the Features.mp4
[859db6529d149ee6]
|
29,726,361 |
A5D2ECF7 |
4. Data Prep & EDA\7. ASSIGNMENT Exploring the Target & Features.mp4
[633acb25a9407c2a]
|
14,850,058 |
954E00C7 |
4. Data Prep & EDA\8. SOLUTION Exploring the Target & Features.mp4
[ea8d2e3fcf315633]
|
41,196,331 |
534307EB |
4. Data Prep & EDA\9. Correlation.mp4
[e6c993c0b413bdde]
|
22,758,700 |
E5D9D0E1 |
5. K-Nearest Neighbors\1. K-Nearest Neighbors.mp4
[decbfca1b3890ee8]
|
32,116,017 |
14DA0CD6 |
5. K-Nearest Neighbors\10. Overfitting & Validation.mp4
[a55a5aeeb337d66a]
|
39,168,711 |
DFD57D13 |
5. K-Nearest Neighbors\11. DEMO Hyperparameter Tuning.mp4
[55328f3c3a75a6a6]
|
31,108,787 |
661EBE0F |
5. K-Nearest Neighbors\12. Hard vs. Soft Classification.mp4
[a0c08f9e133a3081]
|
24,499,352 |
4029A5E3 |
5. K-Nearest Neighbors\13. DEMO Probability vs. Event Rate.mp4
[499705c457df1e2a]
|
61,902,709 |
8245B341 |
5. K-Nearest Neighbors\14. ASSIGNMENT Tuning a KNN Model.mp4
[92edb30e4e683653]
|
7,681,539 |
7EAAE992 |
5. K-Nearest Neighbors\15. SOLUTION Tuning a KNN Model.mp4
[e65a18e93fd6d8d]
|
25,964,348 |
E37F8064 |
5. K-Nearest Neighbors\16. Pros & Cons of KNN.mp4
[e7a91cd459512077]
|
27,219,324 |
52F08D14 |
5. K-Nearest Neighbors\17. Key Takeaways.mp4
[64472717074c41f5]
|
6,374,528 |
282F7AF1 |
5. K-Nearest Neighbors\18. K-Nearest Neighbors.html |
148 |
17F3F328 |
5. K-Nearest Neighbors\2. The KNN Workflow.mp4
[ac5add7cdd4ae8e2]
|
28,611,414 |
0591535A |
5. K-Nearest Neighbors\3. KNN in Python.mp4
[12f23fdaa313fd3b]
|
12,447,288 |
28D661E5 |
5. K-Nearest Neighbors\4. Model Accuracy.mp4
[b0140980a0fbf83a]
|
21,793,503 |
0FF9B793 |
5. K-Nearest Neighbors\5. Confusion Matrix.mp4
[80f0a3ffaea337e9]
|
21,068,220 |
56460D1A |
5. K-Nearest Neighbors\6. DEMO Confusion Matrix.mp4
[4fe69822180bfb4e]
|
24,412,809 |
5BB6FB89 |
5. K-Nearest Neighbors\7. ASSIGNMENT Fitting a Simple KNN Model.mp4
[4b4a167e08bdc346]
|
11,366,492 |
2D234CE7 |
5. K-Nearest Neighbors\8. SOLUTION Fitting a Simple KNN Model.mp4
[652824f43297a13e]
|
29,492,117 |
5E45E0B2 |
5. K-Nearest Neighbors\9. Hyperparameter Tuning.mp4
[e6c75e5624794554]
|
17,158,336 |
1697B10A |
6. Logistic Regression\1. Logistic Regression.mp4
[2b63a3f85b69eafe]
|
15,996,514 |
50E06990 |
6. Logistic Regression\10. SOLUTION Logistic Regression.mp4
[a481f172c1815583]
|
25,640,310 |
067127A6 |
6. Logistic Regression\11. Feature Engineering & Selection.mp4
[610985146712e803]
|
22,748,388 |
B8AE4470 |
6. Logistic Regression\12. Regularization.mp4
[df6ca142b27188dc]
|
25,597,482 |
DA4F9A7C |
6. Logistic Regression\13. Tuning a Regularized Model.mp4
[43b3ff1b7b324ecb]
|
22,470,710 |
C3E10224 |
6. Logistic Regression\14. DEMO Regularized Logistic Regression.mp4
[ed472351790ee730]
|
32,795,876 |
311D668A |
6. Logistic Regression\15. ASSIGNMENT Regularized Logistic Regression.mp4
[bc1d06887410b922]
|
7,204,797 |
B3726CDF |
6. Logistic Regression\16. SOLUTION Regularized Logistic Regression.mp4
[d83f60cfb03c66a9]
|
45,680,175 |
8B4BC5F6 |
6. Logistic Regression\17. Multi-class Logistic Regression.mp4
[d358771e7cad8d63]
|
36,221,348 |
54A7B718 |
6. Logistic Regression\18. ASSIGNMENT Multi-class Logistic Regression.mp4
[502a8ac5920035c4]
|
8,587,237 |
D1F0A8B8 |
6. Logistic Regression\19. SOLUTION Multi-class Logistic Regression.mp4
[307535c0befe9ad8]
|
20,850,874 |
FF2A464A |
6. Logistic Regression\2. Logistic vs. Linear Regression.mp4
[5cd69f1ac361f1aa]
|
12,575,986 |
7B044860 |
6. Logistic Regression\20. Pros & Cons of Logistic Regression.mp4
[7c89e5c0738c3fe4]
|
17,068,111 |
2CD66BA0 |
6. Logistic Regression\21. Key Takeaways.mp4
[ef23852945bde124]
|
8,339,754 |
8BE49F33 |
6. Logistic Regression\22. Logistic Regression.html |
148 |
CF6F672C |
6. Logistic Regression\3. The Logistic Function.mp4
[a2feae838caf4439]
|
14,919,646 |
3D441AB4 |
6. Logistic Regression\4. Likelihood.mp4
[654b1db748fe88b8]
|
24,496,747 |
7D581570 |
6. Logistic Regression\5. Multiple Logistic Regression.mp4
[73806b185d9bfb65]
|
14,827,517 |
C9F7BA11 |
6. Logistic Regression\6. The Logistic Regression Workflow.mp4
[ffb82a814e48b1a3]
|
4,624,625 |
7EF5C0A5 |
6. Logistic Regression\7. Logistic Regression in Python.mp4
[7cdb70ebcf7800fe]
|
29,253,215 |
FA6EE6E2 |
6. Logistic Regression\8. Interpreting Coefficients.mp4
[5e62ca10b9c30f4c]
|
22,101,759 |
5CB1DE73 |
6. Logistic Regression\9. ASSIGNMENT Logistic Regression.mp4
[563f5c45fc4058d5]
|
9,959,252 |
6CDD3DD4 |
7. Classification Metrics\1. Classification Metrics.mp4
[bae77fd2fb2e3aec]
|
14,204,763 |
F0FD539A |
7. Classification Metrics\10. DEMO Plotting Precision-Recall & F1 Curves.mp4
[6981ea883e46f21e]
|
24,620,165 |
DA9E9EAB |
7. Classification Metrics\11. The ROC Curve & AUC.mp4
[4fccb48dc0414972]
|
19,945,770 |
834CDABD |
7. Classification Metrics\12. DEMO The ROC Curve & AUC.mp4
[e9e3da4337a62a12]
|
20,793,311 |
FD5F97DD |
7. Classification Metrics\13. Classification Metrics Recap.mp4
[9fa10fb41dec4bb3]
|
15,537,031 |
E1D81F31 |
7. Classification Metrics\14. ASSIGNMENT Threshold Shifting.mp4
[a6b6e35de29bc5dc]
|
7,345,466 |
65D765AB |
7. Classification Metrics\15. SOLUTION Threshold Shifting.mp4
[61d7eb964efe8ca5]
|
38,514,233 |
B3DFC9D5 |
7. Classification Metrics\16. Multi-class Metrics.mp4
[99df8d5ab118c461]
|
31,217,980 |
90D0DCA0 |
7. Classification Metrics\17. Multi-class Metrics in Python.mp4
[27d21db3d47328c]
|
8,889,787 |
143266C8 |
7. Classification Metrics\18. ASSIGNMENT Multi-class Metrics.mp4
[607ba24d6c14604f]
|
6,546,239 |
B42AAF0F |
7. Classification Metrics\19. SOLUTION Multi-class Metrics.mp4
[52ee49a8c9cfb38c]
|
17,427,542 |
5CCFD93E |
7. Classification Metrics\2. Accuracy, Precision & Recall.mp4
[b89a485551af439b]
|
31,021,456 |
21D868AE |
7. Classification Metrics\20. Key Takeaways.mp4
[98346c59fdd39bab]
|
10,372,004 |
051569A7 |
7. Classification Metrics\21. Classification Metrics.html |
148 |
45043A06 |
7. Classification Metrics\3. DEMO Accuracy, Precision & Recall.mp4
[dafe19609f1ad176]
|
35,518,823 |
B48835AB |
7. Classification Metrics\4. PRO TIP F1 Score.mp4
[b0452ccab4a352de]
|
19,590,477 |
722AE268 |
7. Classification Metrics\5. ASSIGNMENT Model Metrics.mp4
[89d88e940e7a0432]
|
5,550,160 |
F2D2AB76 |
7. Classification Metrics\6. SOLUTION Model Metrics.mp4
[7c25c34256776d88]
|
25,504,994 |
F3B0AC94 |
7. Classification Metrics\7. Soft Classification.mp4
[27d9d019b110bc1d]
|
32,614,904 |
AE9815A2 |
7. Classification Metrics\8. DEMO Leveraging Soft Classification.mp4
[b02e4090491b06c4]
|
20,706,553 |
18E220E3 |
7. Classification Metrics\9. PRO TIP Precision-Recall & F1 Curves.mp4
[6cd1a23a58b3b7e5]
|
21,934,628 |
3C5AB096 |
8. Imbalanced Data\1. Imbalanced Data.mp4
[d4c399e8bb5eb691]
|
24,608,986 |
4561303F |
8. Imbalanced Data\10. Undersampling.mp4
[3a1c8104d330a53a]
|
10,314,912 |
0AE9D2A3 |
8. Imbalanced Data\11. Undersampling in Python.mp4
[7b562c2596737433]
|
35,033,963 |
E0CDC893 |
8. Imbalanced Data\12. ASSIGNMENT Sampling Methods.mp4
[e276ff2314e3795e]
|
17,812,228 |
5EDC7EBB |
8. Imbalanced Data\13. SOLUTION Sampling Methods.mp4
[5615d6c8c81742d7]
|
47,532,329 |
465CC8D4 |
8. Imbalanced Data\14. Changing Class Weights.mp4
[a17b6e2d2a82c20a]
|
17,360,813 |
A06AE2A5 |
8. Imbalanced Data\15. DEMO Changing Class Weights.mp4
[fccdb3a1db737aab]
|
22,381,926 |
1DFF4618 |
8. Imbalanced Data\16. ASSIGNMENT Changing Class Weights.mp4
[10327a337775ce4e]
|
4,475,364 |
01E81520 |
8. Imbalanced Data\17. SOLUTION Changing Class Weights.mp4
[23e0e3759609786d]
|
22,971,922 |
021DFA53 |
8. Imbalanced Data\18. Imbalanced Data Recap.mp4
[f0e61eb2fdef494a]
|
8,681,396 |
EE4B8528 |
8. Imbalanced Data\19. Key Takeaways.mp4
[6552aa0e4491ac21]
|
5,818,109 |
572F3EDB |
8. Imbalanced Data\2. Managing Imbalanced Data.mp4
[ff1d6793969fa774]
|
22,292,329 |
9229E700 |
8. Imbalanced Data\20. Imbalanced Data.html |
148 |
8D494AD3 |
8. Imbalanced Data\3. Threshold Shifting.mp4
[f27d5f5b7043503f]
|
11,811,085 |
A2E529E9 |
8. Imbalanced Data\4. Sampling Strategies.mp4
[48c52df33495dbe9]
|
11,158,973 |
003635C3 |
8. Imbalanced Data\5. Oversampling.mp4
[31579d00a65c5e5c]
|
7,604,424 |
DA7F070C |
8. Imbalanced Data\6. Oversampling in Python.mp4
[1791786ceb0cd3f2]
|
16,152,345 |
84E34677 |
8. Imbalanced Data\7. DEMO Oversampling.mp4
[8cd2d11e4f80bd17]
|
29,493,071 |
32DE20C6 |
8. Imbalanced Data\8. SMOTE.mp4
[51553790274b7d63]
|
5,943,342 |
988722E1 |
8. Imbalanced Data\9. SMOTE in Python.mp4
[abec5930d07e821c]
|
15,589,115 |
DA5ABA31 |
9. Mid-Course Project\1. Project Brief.mp4
[c3dddb13dea20046]
|
25,388,087 |
D47C6022 |
9. Mid-Course Project\2. Solution Walkthrough.mp4
[6d530c44f30ece08]
|
79,545,845 |
FA855946 |
10. Decision Trees\1. Decision Trees.mp4
[a56d939621f138b0]
|
18,890,189 |
E2DB130F |
10. Decision Trees\10. DEMO Hyperparameter Tuning.mp4
[be1e7bb65d7802af]
|
23,968,372 |
E0AA94DE |
10. Decision Trees\11. ASSIGNMENT Tuned Decision Tree.mp4
[fff868818bea34e7]
|
3,720,839 |
376012C0 |
10. Decision Trees\12. SOLUTION Tuned Decision Tree.mp4
[a061a73423773078]
|
27,871,696 |
B8F441A7 |
10. Decision Trees\13. Pros & Cons of Decision Trees.mp4
[67173d9896467995]
|
17,466,961 |
2438967E |
10. Decision Trees\14. Key Takeaways.mp4
[35614e5a0b595a33]
|
6,760,762 |
0C8448BD |
10. Decision Trees\15. Decision Trees.html |
148 |
55D5DED7 |
10. Decision Trees\2. Entropy.mp4
[6aca8a4987304cb0]
|
25,166,744 |
920AE3BC |
10. Decision Trees\3. Decision Tree Predictions.mp4
[5917d30728e6bbed]
|
21,841,113 |
F0E1D038 |
10. Decision Trees\4. Decision Trees in Python.mp4
[3506747c4facb349]
|
16,608,797 |
35F65949 |
10. Decision Trees\5. DEMO Decision Trees.mp4
[828419ad449ef282]
|
33,895,868 |
07BEAC64 |
10. Decision Trees\6. Feature Importance.mp4
[c822c3925a6c66a3]
|
29,664,709 |
DF24D1F1 |
10. Decision Trees\7. ASSIGNMENT Decision Trees.mp4
[e921e9a78fafa7d7]
|
5,935,634 |
662C22D8 |
10. Decision Trees\8. SOLUTION Decision Trees.mp4
[5b783ef1a2307f01]
|
36,845,426 |
4C6D8EB9 |
10. Decision Trees\9. Hyperparameter Tuning for Decision Trees.mp4
[7c07c8e545b9f49c]
|
27,485,978 |
91938A24 |
11. Ensemble Models\1. Ensemble Models.mp4
[b127064c13b8fa7a]
|
21,909,487 |
BD5846A0 |
11. Ensemble Models\10. Pros & Cons of Random Forests.mp4
[22e1188656f51baa]
|
11,345,375 |
B6EBA1CB |
11. Ensemble Models\11. ASSIGNMENT Random Forests.mp4
[a5f5abba522a1183]
|
5,420,464 |
D9C36959 |
11. Ensemble Models\12. SOLUTION Random Forests.mp4
[4286997a2a934588]
|
45,750,566 |
5773DB24 |
11. Ensemble Models\13. Gradient Boosting.mp4
[c1f15bad4bd77816]
|
10,077,729 |
3CC885F0 |
11. Ensemble Models\14. Gradient Boosting in Python.mp4
[896d00d0e7f08c5a]
|
13,003,560 |
428191DB |
11. Ensemble Models\15. Hyperparameter Tuning for Gradient Boosting.mp4
[640e32757fd75626]
|
29,918,126 |
8D2294B8 |
11. Ensemble Models\16. DEMO Hyperparameter Tuning for Gradient Boosting.mp4
[9d53bdf2b31bf624]
|
24,036,865 |
9981CBD4 |
11. Ensemble Models\17. Pros & Cons of Gradient Boosting.mp4
[7efabee9313f8bd3]
|
11,264,292 |
8E9F8269 |
11. Ensemble Models\18. ASSIGNMENT Gradient Boosting.mp4
[e70040ffb42452c9]
|
5,183,788 |
F2F6A631 |
11. Ensemble Models\19. SOLUTION Gradient Boosting.mp4
[2e0249c189292307]
|
31,890,262 |
F6BEE985 |
11. Ensemble Models\2. Simple Ensemble Models.mp4
[ba44ecbf6c33374a]
|
12,944,376 |
4D9C05D2 |
11. Ensemble Models\20. PRO TIP SHAP Values.mp4
[a50f2830af367f5e]
|
33,679,138 |
99099A7D |
11. Ensemble Models\21. DEMO SHAP Values.mp4
[6b30b6b59442f9ba]
|
30,119,418 |
F001E256 |
11. Ensemble Models\22. Key Takeaways.mp4
[62b3f6d0b120af8c]
|
6,656,222 |
D9EC084A |
11. Ensemble Models\23. DEMO Ensemble Models.html |
148 |
4A4578C8 |
11. Ensemble Models\24. Ensemble Models.html |
148 |
66C78CC1 |
11. Ensemble Models\3. DEMO Simple Ensemble Models.mp4
[106db1e3da242fa5]
|
27,612,203 |
F33B93CC |
11. Ensemble Models\4. ASSIGNMENT Simple Ensemble Models.mp4
[ea456b8c95fbef11]
|
8,599,009 |
07C4DF7D |
11. Ensemble Models\5. SOLUTION Simple Ensemble Models.mp4
[8f93b2dcd3bead63]
|
28,738,356 |
4D184BCE |
11. Ensemble Models\6. Random Forests.mp4
[3065f9144e83fd29]
|
6,611,171 |
08E791D1 |
11. Ensemble Models\7. Fitting Random Forests in Python.mp4
[4273cd64dafae0d8]
|
22,756,293 |
8BC29EDC |
11. Ensemble Models\8. Hyperparameter Tuning for Random Forests.mp4
[959bce5d0b4daefe]
|
29,621,224 |
E851387E |
11. Ensemble Models\9. PRO TIP Random Search.mp4
[67717dded8c38056]
|
38,466,595 |
7518E6A4 |
12. Classification Summary\1. Recap Classification Models & Workflow.mp4
[22d8879abdc20b8f]
|
14,639,249 |
2A137D95 |
12. Classification Summary\2. Pros & Cons of Classification Models.mp4
[8824244fb77fef54]
|
21,160,151 |
281EC3D4 |
12. Classification Summary\3. DEMO Production Pipeline & Deployment.mp4
[3e6123a0ab349ebb]
|
78,914,522 |
A807B5C2 |
12. Classification Summary\4. Looking Ahead Unsupervised Learning.mp4
[c2a5f0b6217e81dc]
|
5,802,146 |
56509019 |
13. Final Project\1. Project Brief.mp4
[57d65f0c13584366]
|
17,038,520 |
211CA971 |
13. Final Project\2. Solution Walkthrough.mp4
[841742ba6a08249e]
|
58,596,905 |
97533732 |
14. Next Steps\1. BONUS LESSON.html |
10,666 |
AFAF8B4A |
1. Introduction\1. Course Introduction.mp4
[4f68302c34fb7268]
|
30,756,676 |
244D745E |
1. Introduction\2. About This Series.mp4
[67a217322f9efab8]
|
3,823,818 |
D702DA71 |
1. Introduction\3. Course Structure & Outline.mp4
[7dbeb30b11229fe7]
|
12,407,496 |
5714AFB6 |
1. Introduction\4. Course Structure & Outline.mp4
[ea04ab0841df89c5]
|
12,402,394 |
35FEAF61 |
1. Introduction\5. READ ME Important Notes for New Students.html |
4,912 |
B6C87D58 |
1. Introduction\6. DOWNLOAD Course Resources.html |
549 |
49A1897F |
1. Introduction\6.1 Data Science in Python - Classification.pdf |
36,050,401 |
F7D3926E |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\.DS_Store |
10,244 |
6B2BC136 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Assignments\.ipynb_checkpoints\01_EDA_assignments-checkpoint.ipynb |
8,029 |
448200A8 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Assignments\.ipynb_checkpoints\01_EDA_solutions-checkpoint.ipynb |
936,606 |
1D6B75C2 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Assignments\.ipynb_checkpoints\02_KNN_assignments-checkpoint.ipynb |
3,248 |
BEA05C70 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Assignments\.ipynb_checkpoints\02_KNN_solutions-checkpoint.ipynb |
214,981 |
4A1ED9B3 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Assignments\.ipynb_checkpoints\03_logistic_regression_assignments-checkpoint.ipynb |
10,503 |
CF8EF437 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Assignments\.ipynb_checkpoints\03_logistic_regression_solutions-checkpoint.ipynb |
297,072 |
0AD87252 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Assignments\.ipynb_checkpoints\04_metrics_assignments-checkpoint.ipynb |
13,692 |
E5578CE0 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Assignments\.ipynb_checkpoints\04_metrics_solutions-checkpoint.ipynb |
172,710 |
B843ABC1 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Assignments\.ipynb_checkpoints\05_Imbalanced_data_assignments-checkpoint.ipynb |
10,116 |
AD51A8BF |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Assignments\.ipynb_checkpoints\05_Imbalanced_data_solutions-checkpoint.ipynb |
258,558 |
CEA0D0B7 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Assignments\.ipynb_checkpoints\06_decision_tree_assignments-checkpoint.ipynb |
8,778 |
034B7362 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Assignments\.ipynb_checkpoints\06_decision_tree_solutions-checkpoint.ipynb |
275,147 |
ECE27786 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Assignments\.ipynb_checkpoints\07_ensemble_method_assignments-checkpoint.ipynb |
11,156 |
7D47B082 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Assignments\.ipynb_checkpoints\07_ensemble_method_solutions-checkpoint.ipynb |
215,480 |
6822973A |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Assignments\.ipynb_checkpoints\project_notebook-checkpoint.ipynb |
13,283 |
CBB54905 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Assignments\.ipynb_checkpoints\project_solutions-checkpoint.ipynb |
1,558,944 |
13088024 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Assignments\01_EDA_assignments.ipynb |
8,029 |
448200A8 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Assignments\01_EDA_solutions.ipynb |
936,606 |
1D6B75C2 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Assignments\02_KNN_assignments.ipynb |
3,248 |
BEA05C70 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Assignments\02_KNN_solutions.ipynb |
214,981 |
4A1ED9B3 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Assignments\03_logistic_regression_assignments.ipynb |
10,503 |
CF8EF437 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Assignments\03_logistic_regression_solutions.ipynb |
297,072 |
0AD87252 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Assignments\04_metrics_assignments.ipynb |
13,692 |
E5578CE0 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Assignments\04_metrics_solutions.ipynb |
172,710 |
B843ABC1 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Assignments\05_Imbalanced_data_assignments.ipynb |
10,116 |
AD51A8BF |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Assignments\05_Imbalanced_data_solutions.ipynb |
258,558 |
CEA0D0B7 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Assignments\06_decision_tree_assignments.ipynb |
8,778 |
034B7362 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Assignments\06_decision_tree_solutions.ipynb |
275,147 |
ECE27786 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Assignments\07_ensemble_method_assignments.ipynb |
11,156 |
7D47B082 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Assignments\07_ensemble_method_solutions.ipynb |
215,480 |
6822973A |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Assignments\project_notebook.ipynb |
13,283 |
CBB54905 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Assignments\project_solutions.ipynb |
1,558,944 |
13088024 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Data\.DS_Store |
6,148 |
6D88006A |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Data\creditcard.csv |
150,828,752 |
D5D6C29B |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Data\credit_train_clean.csv |
30,177,043 |
A76AEEA5 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Data\income.csv |
4,218,835 |
D0526B28 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Data\Loan_Default.csv |
28,480,484 |
A50656F3 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Data\Social_Network_Ads.csv |
10,926 |
10E68C41 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Slides and Demos\.DS_Store |
6,148 |
6D88006A |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Slides and Demos\.ipynb_checkpoints\01_Data Prep & EDA Demos-checkpoint.ipynb |
7,103,388 |
3BAC4549 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Slides and Demos\.ipynb_checkpoints\01_Data Prep & EDA Slides-checkpoint.ipynb |
447,536 |
DD3C03F5 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Slides and Demos\.ipynb_checkpoints\02_KNN Demos-checkpoint.ipynb |
177,393 |
2D070EEE |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Slides and Demos\.ipynb_checkpoints\02_KNN Slides-checkpoint.ipynb |
3,935,749 |
9C0A0B2A |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Slides and Demos\.ipynb_checkpoints\03_Logistic Regression Demos-checkpoint.ipynb |
58,621 |
1BAEACA4 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Slides and Demos\.ipynb_checkpoints\03_Logistic Regression Slides-checkpoint.ipynb |
232,319 |
0CBA7ECF |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Slides and Demos\.ipynb_checkpoints\04_Evaluation Metrics Demos-checkpoint.ipynb |
162,596 |
160A55E4 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Slides and Demos\.ipynb_checkpoints\04_Evaluation Metrics Slide-checkpoint.ipynb |
127,256 |
90DCFB94 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Slides and Demos\.ipynb_checkpoints\05_Imbalanced Data Demos-checkpoint.ipynb |
244,674 |
FE94C332 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Slides and Demos\.ipynb_checkpoints\05_Imbalanced Data Slides-checkpoint.ipynb |
104,599 |
FDAB8028 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Slides and Demos\.ipynb_checkpoints\06_Decision Tree Demos-checkpoint.ipynb |
1,167,084 |
ED8FC304 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Slides and Demos\.ipynb_checkpoints\06_Decision Trees Slides-checkpoint.ipynb |
345,873 |
5076F121 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Slides and Demos\.ipynb_checkpoints\07_Ensemble Methods Slides-checkpoint.ipynb |
27,163 |
AFE69550 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Slides and Demos\.ipynb_checkpoints\07_Ensemble Models Demos-checkpoint.ipynb |
135,327 |
FEAFE198 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Slides and Demos\.ipynb_checkpoints\08_Pipeline Scoring-checkpoint.ipynb |
24,457 |
2E5D0C71 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Slides and Demos\.ipynb_checkpoints\08_Pipeline-checkpoint.ipynb |
19,914 |
1A38B6EB |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Slides and Demos\.ipynb_checkpoints\Classification 101-checkpoint.ipynb |
4,989 |
68A84F29 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Slides and Demos\.ipynb_checkpoints\Decision Trees-checkpoint.ipynb |
355,321 |
6B5D195B |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Slides and Demos\.ipynb_checkpoints\EDA-checkpoint.ipynb |
484,667 |
F18AA380 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Slides and Demos\.ipynb_checkpoints\Ensemble Methods-checkpoint.ipynb |
615,833 |
4A951A80 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Slides and Demos\.ipynb_checkpoints\Imbalanced Data-checkpoint.ipynb |
256,972 |
77914C3A |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Slides and Demos\.ipynb_checkpoints\KNN-checkpoint.ipynb |
3,956,436 |
673304D7 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Slides and Demos\.ipynb_checkpoints\Logistic Regression-checkpoint.ipynb |
151,872 |
197DE126 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Slides and Demos\.ipynb_checkpoints\Model Evaluation-checkpoint.ipynb |
174,680 |
643B2535 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Slides and Demos\.ipynb_checkpoints\Pipeline Scoring-checkpoint.ipynb |
24,458 |
FAA504A8 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Slides and Demos\.ipynb_checkpoints\Pipeline-checkpoint.ipynb |
19,728 |
C48064B6 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Slides and Demos\01_Data Prep & EDA Demos.ipynb |
7,103,388 |
3BAC4549 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Slides and Demos\01_Data Prep & EDA Slides.ipynb |
447,536 |
DD3C03F5 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Slides and Demos\02_KNN Demos.ipynb |
177,393 |
2D070EEE |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Slides and Demos\02_KNN Slides.ipynb |
3,935,749 |
9C0A0B2A |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Slides and Demos\03_Logistic Regression Demos.ipynb |
58,621 |
1BAEACA4 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Slides and Demos\03_Logistic Regression Slides.ipynb |
232,319 |
0CBA7ECF |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Slides and Demos\04_Evaluation Metrics Demos.ipynb |
162,596 |
160A55E4 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Slides and Demos\04_Evaluation Metrics Slide.ipynb |
127,256 |
90DCFB94 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Slides and Demos\05_Imbalanced Data Demos.ipynb |
244,674 |
FE94C332 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Slides and Demos\05_Imbalanced Data Slides.ipynb |
104,599 |
FDAB8028 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Slides and Demos\06_Decision Tree Demos.ipynb |
1,167,084 |
ED8FC304 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Slides and Demos\06_Decision Trees Slides.ipynb |
345,873 |
5076F121 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Slides and Demos\07_Ensemble Methods Slides.ipynb |
27,163 |
AFE69550 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Slides and Demos\07_Ensemble Models Demos.ipynb |
135,327 |
FEAFE198 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Slides and Demos\08_Pipeline Scoring.ipynb |
24,457 |
2E5D0C71 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Slides and Demos\08_Pipeline.ipynb |
19,914 |
1A38B6EB |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Slides and Demos\ads_model_pipeline.pkl |
4,295 |
23C5C7B1 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Slides and Demos\ads_model_pipeline2.pkl |
4,279 |
EDCC9D54 |
1. Introduction\6.2 Data Science in Python - Classification\__MACOSX\Classification_Course_Materials\._.DS_Store |
120 |
38C0880B |
1. Introduction\6.2 Data Science in Python - Classification\__MACOSX\Classification_Course_Materials\Data\._.DS_Store |
120 |
38C0880B |
1. Introduction\6.2 Data Science in Python - Classification\__MACOSX\Classification_Course_Materials\Data\._creditcard.csv |
276 |
0411CB40 |
1. Introduction\6.2 Data Science in Python - Classification\__MACOSX\Classification_Course_Materials\Data\._credit_train_clean.csv |
1,152 |
467C20C6 |
1. Introduction\6.2 Data Science in Python - Classification\__MACOSX\Classification_Course_Materials\Data\._income.csv |
276 |
89F598C5 |
1. Introduction\6.2 Data Science in Python - Classification\__MACOSX\Classification_Course_Materials\Data\._Loan_Default.csv |
276 |
4EAC11A2 |
1. Introduction\6.2 Data Science in Python - Classification\__MACOSX\Classification_Course_Materials\Data\._Social_Network_Ads.csv |
332 |
247C0252 |
1. Introduction\6.2 Data Science in Python - Classification\__MACOSX\Classification_Course_Materials\Slides and Demos\._.DS_Store |
120 |
38C0880B |
1. Introduction\6.2 Data Science in Python - Classification\__MACOSX\Classification_Course_Materials\Slides and Demos\._02_KNN Slides.ipynb |
120 |
340F305C |
1. Introduction\7. Introducing the Course Project.mp4
[ed2b47433ef8836b]
|
4,682,678 |
D5245A66 |
1. Introduction\8. Setting Expectations.mp4
[b2cd71f41044c3ac]
|
10,593,705 |
BC6B1772 |
1. Introduction\9. Jupyter Installation & Launch.mp4
[bd7220550de5edcf]
|
24,982,754 |
5BFB1736 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Assignments\.ipynb_checkpoints |
0 |
00000000 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Slides and Demos\.ipynb_checkpoints |
0 |
00000000 |
1. Introduction\6.2 Data Science in Python - Classification\__MACOSX\Classification_Course_Materials\Data |
0 |
00000000 |
1. Introduction\6.2 Data Science in Python - Classification\__MACOSX\Classification_Course_Materials\Slides and Demos |
0 |
00000000 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Assignments |
0 |
00000000 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Data |
0 |
00000000 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials\Slides and Demos |
0 |
00000000 |
1. Introduction\6.2 Data Science in Python - Classification\__MACOSX\Classification_Course_Materials |
0 |
00000000 |
1. Introduction\6.2 Data Science in Python - Classification\Classification_Course_Materials |
0 |
00000000 |
1. Introduction\6.2 Data Science in Python - Classification\__MACOSX |
0 |
00000000 |
1. Introduction\6.2 Data Science in Python - Classification |
0 |
00000000 |
2. Intro to Data Science |
0 |
00000000 |
3. Classification 101 |
0 |
00000000 |
4. Data Prep & EDA |
0 |
00000000 |
5. K-Nearest Neighbors |
0 |
00000000 |
6. Logistic Regression |
0 |
00000000 |
7. Classification Metrics |
0 |
00000000 |
8. Imbalanced Data |
0 |
00000000 |
9. Mid-Course Project |
0 |
00000000 |
10. Decision Trees |
0 |
00000000 |
11. Ensemble Models |
0 |
00000000 |
12. Classification Summary |
0 |
00000000 |
13. Final Project |
0 |
00000000 |
14. Next Steps |
0 |
00000000 |
1. Introduction |
0 |
00000000 |
|
Total size: |
3,904,245,761 |
|
|