RAR-files |
sim-ugprfbam.rar |
15,000,000 |
BB1A2C06 |
sim-ugprfbam.r00 |
15,000,000 |
A8BAE5C5 |
sim-ugprfbam.r01 |
15,000,000 |
AEFAC6CD |
sim-ugprfbam.r02 |
15,000,000 |
0B8C9025 |
sim-ugprfbam.r03 |
15,000,000 |
AEB7A168 |
sim-ugprfbam.r04 |
15,000,000 |
2D894005 |
sim-ugprfbam.r05 |
15,000,000 |
45D63C22 |
sim-ugprfbam.r06 |
15,000,000 |
271ECEA8 |
sim-ugprfbam.r07 |
15,000,000 |
A1D483E7 |
sim-ugprfbam.r08 |
15,000,000 |
0A2BA807 |
sim-ugprfbam.r09 |
15,000,000 |
443880E4 |
sim-ugprfbam.r10 |
15,000,000 |
7A61FD47 |
sim-ugprfbam.r11 |
15,000,000 |
5BE88859 |
sim-ugprfbam.r12 |
15,000,000 |
4FC74F5C |
sim-ugprfbam.r13 |
15,000,000 |
8DD27C82 |
sim-ugprfbam.r14 |
15,000,000 |
DEAA39FD |
sim-ugprfbam.r15 |
15,000,000 |
E7E08067 |
sim-ugprfbam.r16 |
15,000,000 |
A8EE046F |
sim-ugprfbam.r17 |
13,704,700 |
547EE867 |
|
Total size: |
283,704,700 |
|
|
Archived
files |
1. Fundamentals\1. Introduction.mp4
[607a954ae96ac8e]
|
22,705,909 |
23C78EF0 |
1. Fundamentals\1.1 reading1.pdf |
205,698 |
13E143D0 |
1. Fundamentals\10. Reading 5.html |
167 |
DA8999E3 |
1. Fundamentals\2. Reading 1.html |
167 |
C8E7683E |
1. Fundamentals\3. The conditional of a Gaussian.mp4
[dbcfc51fbb9e1fd0]
|
28,980,199 |
E1581977 |
1. Fundamentals\3.1 reading2.pdf |
315,164 |
975A8198 |
1. Fundamentals\4. Reading 2.html |
167 |
D6CEE052 |
1. Fundamentals\5. An example of finding the conditional.mp4
[88d96c87d98e79e7]
|
16,927,972 |
AECA6EBB |
1. Fundamentals\5.1 reading3.pdf |
275,755 |
CDE97215 |
1. Fundamentals\6. Reading 3.html |
167 |
0B5839D7 |
1. Fundamentals\7. Supervised learning with the Gaussian process.mp4
[c9e768664a4cc0f0]
|
33,876,311 |
4886D0CA |
1. Fundamentals\7.1 reading4.pdf |
226,147 |
B74FFF9E |
1. Fundamentals\8. Reading 4.html |
167 |
F1BE3567 |
1. Fundamentals\9. An example of supervised learning.mp4
[80d1397ddd151f23]
|
16,398,172 |
96E00320 |
1. Fundamentals\9.1 reading5.pdf |
252,384 |
22A4E6C1 |
2. Application\1. Kernels and their usefulness.mp4
[d3f643609d90db9b]
|
23,176,860 |
B60DC857 |
2. Application\1.1 reading6.pdf |
3,560,845 |
BF365A5A |
2. Application\2. Reading 6.html |
167 |
C7A62AF0 |
2. Application\3. Classic Gaussian process regression examples.mp4
[cae64eda69b4d5dc]
|
33,658,992 |
47967D0C |
2. Application\3.1 reading7.pdf |
1,828,476 |
9DD91331 |
2. Application\4. Reading 7.html |
167 |
2B9DB46F |
2. Application\5. Applying Gaussian process regression to real-world data I.mp4
[f4c8f80966120669]
|
34,661,490 |
888580C7 |
2. Application\6. Applying Gaussian process regression to real-world data II.mp4
[be2cabd1f516729c]
|
21,213,134 |
C10AFFB1 |
2. Application\7. Applying Gaussian process regression to real-world data III.mp4
[ffb8e2ca483c5790]
|
19,242,867 |
A09F7A8C |
2. Application\8. Wrap summarizing the process.mp4
[a182b9d12878379f]
|
17,939,211 |
29EE740C |
3. Assignment\1. Running a Gaussian process regression algorithm in Python and optimizing kernels.html |
171 |
7BD2690F |
1. Fundamentals |
0 |
00000000 |
2. Application |
0 |
00000000 |
3. Assignment |
0 |
00000000 |
|
Total size: |
275,446,926 |
|
|